Difference between revisions of "1984 AHSME Problems/Problem 18"
m (→Solution) |
|||
Line 37: | Line 37: | ||
==See Also== | ==See Also== | ||
{{AHSME box|year=1984|num-b=17|num-a=19}} | {{AHSME box|year=1984|num-b=17|num-a=19}} | ||
+ | {{MAA Notice}} |
Revision as of 11:51, 5 July 2013
Problem
A point is to be chosen in the coordinate plane so that it is equally distant from the x-axis, the y-axis, and the line
. Then
is
Solution
Consider the triangle bound by the x-axis, the y-axis, and the line . The point equidistant from the vertices of this triangle is the incenter, the point of intersection of the angle bisectors and the center of the inscribed circle. Now, remove the coordinate system. Let the origin be
, the y-intercept of the line be
, the x-intercept of the line be
, and the point be
.
Notice that in the diagram is what we are looking for: the distance from the point to the x-axis (
). Also,
and
are angle bisectors since
is the incenter.
by
, and
, since
, so
. Therefore, since
, we have
. Also,
and
by
, so
, and
. However, we know from the Pythagorean Theorem that
. Therefore,
.
See Also
1984 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 17 |
Followed by Problem 19 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.