Difference between revisions of "1984 USAMO Problems/Problem 1"

(Solution)
(Solution)
Line 9: Line 9:
 
Solution #1  
 
Solution #1  
  
Using Vieta's formulas, we have: a+b+c+d=18,ab+ac+ad+bc+bd+cd=k,abc+abd+acd+bcd=200,abcd=1984.
+
Using Vieta's formulas, we have:  
  
From the last of these equations, we see that <math>cd = \frac{abcd}{ab} = \frac{-1984}{-32} = 62</math>. Thus, the second equation becomes <math>-32+ac+ad+bc+bd+62=k</math>, and so <math>ac+ad+bc+bd=k-30</math>. The key insight is now to factor the left-hand side as a product of two binomials: <math>(a+b)(c+d)=k-30</math>, so that we now only need to determine <math>a+b</math> and <math>c+d</math> rather than all four of <math>a,b,c,d</math>.
+
<math>\begin{align*}a+b+c+d &= 18,\\ ab+ac+ad+bc+bd+cd &= k,\ abc+abd+acd+bcd &=-200,\ abcd &=-1984.\ \end{align*}</math>  
  
Let <math>p=a+b</math> and <math>q=c+d</math>. Plugging our known values for <math>ab</math> and <math>cd</math> into the third Vieta equation, <math>-200 = abc+abd + acd + bcd = ab(c+d) + cd(a+b)</math>, we have <math>-200 = -32(c+d) + 62(a+b) = 62p-32q</math>. Moreover, the first Vieta equation, a+b+c+d=18, gives p+q=18. Thus we have two linear equations in p and q, which we solve to obtain p=4 and q=14.  
+
 +
From the last of these equations, we see that <math>cd = \frac{abcd}{ab} = \frac{-1984}{-32} = 62</math>. Thus, the second equation becomes <math>-32+ac+ad+bc+bd+62=k</math>, and so <math>ac+ad+bc+bd=k-30</math>. The key insight is now to factor the left-hand side as a product of two binomials: <math>(a+b)(c+d)=k-30</math>, so that we now only need to determine <math>a+b</math> and <math>c+d</math> rather than all four of <math>a,b,c,d</math>.  
  
Therefore, we have (\underbrace{a+b}_4)(\underbrace{c+d}_{14}) = k-30, yielding k=4\cdot 14+30 = \boxed{86}.  
+
Let <math>p=a+b</math> and <math>q=c+d</math>. Plugging our known values for <math>ab</math> and <math>cd</math> into the third Vieta equation, <math>-200 = abc+abd + acd + bcd = ab(c+d) + cd(a+b)</math>, we have <math>-200 = -32(c+d) + 62(a+b) = 62p-32q</math>. Moreover, the first Vieta equation, <math>a+b+c+d=18</math>, gives <math>p+q=18</math>. Thus we have two linear equations in <math>p</math> and <math>q</math>, which we solve to obtain <math>p=4</math> and <math>q=14</math>.
 +
 
 +
Therefore, we have <math>(\underbrace{a+b}_4)(\underbrace{c+d}_{14}) = k-30, yielding k=4\cdot 14+30 = \boxed{86}</math>.  
  
 
Solution #2 (sketch)  
 
Solution #2 (sketch)  
  
We start as before: ab=-32 and cd=62. We now observe that a and b must be the roots of a quadratic, x^2+rx-32, where r is a constant (secretly, r is just -(a+b)=-p from Solution #1). Similarly, c and d must be the roots of a quadratic x^2+sx+62.  
+
We start as before: <math>ab=-32</math> and <math>cd=62</math>. We now observe that a and b must be the roots of a quadratic, <math>x^2+rx-32</math>, where r is a constant (secretly, r is just -(a+b)=-p from Solution #1). Similarly, c and d must be the roots of a quadratic <math>x^2+sx+62</math>.  
 +
 
 +
Now
 +
 
 +
<math><cmath> x418x3+kx2+200x1984=(x2+rx32)(x2+sx+62)=x4+(r+s)x3+(6232+rs)x2+(62s32r)x1984. </cmath></math>
  
Now \begin{align*} x^4 - 18x^3 + kx^2 + 200x - 1984 &= (x^2 + rx - 32)(x^2 + sx + 62) <br /> & = x^4 + (r + s)x^3 + (62 - 32 ... Equating the coefficients of x^3 and x with their known values, we are left with essentially the same linear equations as in Solution #1, which we solve in the same way. Then we compute the coefficient of x^2 and get k=\boxed{86}.
+
Equating the coefficients of <math>x^3</math> and <math>x</math> with their known values, we are left with essentially the same linear equations as in Solution #1, which we solve in the same way. Then we compute the coefficient of <math>x^2</math> and get <math>k=\boxed{86}.</math>
  
 
==See Also==
 
==See Also==

Revision as of 20:28, 27 April 2014

Problem

In the polynomial $x^4 - 18x^3 + kx^2 + 200x - 1984 = 0$, the product of $2$ of its roots is $- 32$. Find $k$.

Solution

Let the four roots be $a, b, c, and d$, so that $ab=-32$. From here we show two methods; the second is more slick, but harder to see.

Solution #1

Using Vieta's formulas, we have:

$a+b+c+d=18,ab+ac+ad+bc+bd+cd=k,abc+abd+acd+bcd=200,abcd=1984.$ (Error compiling LaTeX. Unknown error_msg)


From the last of these equations, we see that $cd = \frac{abcd}{ab} = \frac{-1984}{-32} = 62$. Thus, the second equation becomes $-32+ac+ad+bc+bd+62=k$, and so $ac+ad+bc+bd=k-30$. The key insight is now to factor the left-hand side as a product of two binomials: $(a+b)(c+d)=k-30$, so that we now only need to determine $a+b$ and $c+d$ rather than all four of $a,b,c,d$.

Let $p=a+b$ and $q=c+d$. Plugging our known values for $ab$ and $cd$ into the third Vieta equation, $-200 = abc+abd + acd + bcd = ab(c+d) + cd(a+b)$, we have $-200 = -32(c+d) + 62(a+b) = 62p-32q$. Moreover, the first Vieta equation, $a+b+c+d=18$, gives $p+q=18$. Thus we have two linear equations in $p$ and $q$, which we solve to obtain $p=4$ and $q=14$.

Therefore, we have $(\underbrace{a+b}_4)(\underbrace{c+d}_{14}) = k-30, yielding k=4\cdot 14+30 = \boxed{86}$.

Solution #2 (sketch)

We start as before: $ab=-32$ and $cd=62$. We now observe that a and b must be the roots of a quadratic, $x^2+rx-32$, where r is a constant (secretly, r is just -(a+b)=-p from Solution #1). Similarly, c and d must be the roots of a quadratic $x^2+sx+62$.

Now

$<cmath> x418x3+kx2+200x1984=(x2+rx32)(x2+sx+62)=x4+(r+s)x3+(6232+rs)x2+(62s32r)x1984. </cmath>$ (Error compiling LaTeX. Unknown error_msg)

Equating the coefficients of $x^3$ and $x$ with their known values, we are left with essentially the same linear equations as in Solution #1, which we solve in the same way. Then we compute the coefficient of $x^2$ and get $k=\boxed{86}.$

See Also

1984 USAMO (ProblemsResources)
Preceded by
First
Problem
Followed by
Problem 2
1 2 3 4 5
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png