Difference between revisions of "1988 AHSME Problems/Problem 23"

m (Problem)
Line 7: Line 7:
 
\textbf{(C)}\ 18\qquad
 
\textbf{(C)}\ 18\qquad
 
\textbf{(D)}\ 27\qquad
 
\textbf{(D)}\ 27\qquad
\textbf{(E)}\ 36  \
+
\textbf{(E)}\ 36  </math>  
\textbf{(E)}\ \text{more than } 7  </math>
 
  
 
==Solution==
 
==Solution==

Revision as of 01:06, 23 October 2014

Problem

The six edges of a tetrahedron $ABCD$ measure $7, 13, 18, 27, 36$ and $41$ units. If the length of edge $AB$ is $41$, then the length of edge $CD$ is

$\textbf{(A)}\ 7\qquad \textbf{(B)}\ 13\qquad \textbf{(C)}\ 18\qquad \textbf{(D)}\ 27\qquad \textbf{(E)}\ 36$

Solution

See also

1988 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png