Difference between revisions of "2007 AIME I Problems/Problem 13"
Bharatputra (talk | contribs) (→Problem) |
(→Solution 1) |
||
Line 10: | Line 10: | ||
Use 3D analytical geometry, setting the origin as the center of the square base and the pyramid’s points oriented as shown above. <math>A(-2,2,0),\ B(2,2,0),\ C(2,-2,0),\ D(-2,-2,0),\ E(0,0,2\sqrt{2})</math>. Using the coordinates of the three points of intersection (<math>(-1,1,\sqrt{2}),\ (2,0,0),\ (0,-2,0)</math>), it is possible to determine the equation of the plane. The equation of a plane resembles <math>ax + by + cz = d</math>, and using the points we find that <math>2a = d \Longrightarrow d = \frac{a}{2}</math>, <math>-2b = d \Longrightarrow d = \frac{-b}{2}</math>, and <math>-a + b + \sqrt{2}c = d \Longrightarrow -\frac{d}{2} - \frac{d}{2} + \sqrt{2}c = d \Longrightarrow c = d\sqrt{2}</math>. It is then <math>x - y + 2\sqrt{2}z = 2</math>. | Use 3D analytical geometry, setting the origin as the center of the square base and the pyramid’s points oriented as shown above. <math>A(-2,2,0),\ B(2,2,0),\ C(2,-2,0),\ D(-2,-2,0),\ E(0,0,2\sqrt{2})</math>. Using the coordinates of the three points of intersection (<math>(-1,1,\sqrt{2}),\ (2,0,0),\ (0,-2,0)</math>), it is possible to determine the equation of the plane. The equation of a plane resembles <math>ax + by + cz = d</math>, and using the points we find that <math>2a = d \Longrightarrow d = \frac{a}{2}</math>, <math>-2b = d \Longrightarrow d = \frac{-b}{2}</math>, and <math>-a + b + \sqrt{2}c = d \Longrightarrow -\frac{d}{2} - \frac{d}{2} + \sqrt{2}c = d \Longrightarrow c = d\sqrt{2}</math>. It is then <math>x - y + 2\sqrt{2}z = 2</math>. | ||
− | <center> <asy>import three; pointpen = black; pathpen = black+linewidth(0.7); currentprojection = perspective(2.5,-12,4); | + | <center> |
+ | <asy>import three; | ||
+ | pointpen = black; | ||
+ | pathpen = black+linewidth(0.7); | ||
+ | currentprojection = perspective(2.5,-12,4); | ||
triple A=(-2,2,0), B=(2,2,0), C=(2,-2,0), D=(-2,-2,0), E=(0,0,2*2^.5), P=(A+E)/2, Q=(B+C)/2, R=(C+D)/2, Y=(-3/2,-3/2,2^.5/2),X=(3/2,3/2,2^.5/2); | triple A=(-2,2,0), B=(2,2,0), C=(2,-2,0), D=(-2,-2,0), E=(0,0,2*2^.5), P=(A+E)/2, Q=(B+C)/2, R=(C+D)/2, Y=(-3/2,-3/2,2^.5/2),X=(3/2,3/2,2^.5/2); | ||
− | + | draw(A--B--C--D--A--E--B--E--C--E--D); | |
− | </asy> | + | label("A",A, SE); |
+ | label("B",B,(1,0,0)); | ||
+ | label("C",C, SE); | ||
+ | label("D",D, W); | ||
+ | label("E",E,N); | ||
+ | label("P",P, NW); | ||
+ | label("Q",Q,(1,0,0)); | ||
+ | label("R",R, S); | ||
+ | label("Y",Y,NW); | ||
+ | label("X",X,NE); | ||
+ | draw(P--X--Q--R--Y--cycle,linetype("6 6")+linewidth(0.7)); | ||
+ | </asy> | ||
+ | <asy> | ||
+ | pointpen = black; | ||
+ | pathpen = black+linewidth(0.7); | ||
pair P = (0, 2.5^.5), X = (3/2^.5,0), Y = (-3/2^.5,0), Q = (2^.5,-2.5^.5), R = (-2^.5,-2.5^.5); | pair P = (0, 2.5^.5), X = (3/2^.5,0), Y = (-3/2^.5,0), Q = (2^.5,-2.5^.5), R = (-2^.5,-2.5^.5); | ||
− | D(MP("P",P,N)--MP("X",X,NE)--MP("Q",Q)--MP("R",R)--MP("Y",Y,NW)--cycle); D(X--Y,linetype("6 6") + linewidth(0.7)); D(P--(0,-P.y),linetype("6 6") + linewidth(0.7)); | + | D(MP("P",P,N)--MP("X",X,NE)--MP("Q",Q)--MP("R",R)--MP("Y",Y,NW)--cycle); |
− | MP("3\sqrt{2}",(X+Y)/2); MP("2\sqrt{2}",(Q+R)/2); MP("\sqrt{\frac{5}{2}}",(0,-P.y/2),E); MP("\sqrt{\frac{5}{2}}",(0,2*P.y/5),E); | + | D(X--Y,linetype("6 6") + linewidth(0.7)); D(P--(0,-P.y),linetype("6 6") + linewidth(0.7)); |
+ | MP("3\sqrt{2}",(X+Y)/2); | ||
+ | MP("2\sqrt{2}",(Q+R)/2); | ||
+ | MP("\sqrt{\frac{5}{2}}",(0,-P.y/2),E); | ||
+ | MP("\sqrt{\frac{5}{2}}",(0,2*P.y/5),E); | ||
</asy> | </asy> | ||
− | |||
</center> | </center> | ||
Revision as of 21:15, 25 August 2015
Contents
[hide]Problem
A square pyramid with base and vertex
has eight edges of length
. A plane passes through the midpoints of
,
, and
. The plane's intersection with the pyramid has an area that can be expressed as
. Find
.
Solution
Solution 1
Note first that the intersection is a pentagon.
Use 3D analytical geometry, setting the origin as the center of the square base and the pyramid’s points oriented as shown above. . Using the coordinates of the three points of intersection (
), it is possible to determine the equation of the plane. The equation of a plane resembles
, and using the points we find that
,
, and
. It is then
.
Write the equation of the lines and substitute to find that the other two points of intersection on ,
are
. To find the area of the pentagon, break it up into pieces (an isosceles triangle on the top, an isosceles trapezoid on the bottom). Using the distance formula (
), it is possible to find that the area of the triangle is
. The trapezoid has area
. In total, the area is
, and the solution is
.
Solution 2
Use the same coordinate system as above, and let the plane determined by intersect
at
and
at
. Then the line
is the intersection of the planes determined by
and
.
Note that the plane determined by has the equation
, and
can be described by
. It intersects the plane when
, or
. This intersection point has
. Similarly, the intersection between
and
has
. So
lies on the plane
, from which we obtain
and
. The area of the pentagon
can be computed in the same way as above.
See also
2007 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.