Difference between revisions of "2006 AMC 12A Problems/Problem 8"

 
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
 +
How many sets of two or more consecutive positive integers have a sum of <math>15</math>?
 +
 +
<math> \mathrm{(A) \ } 1\qquad \mathrm{(B) \ } 2\qquad \mathrm{(C) \ } 3\qquad \mathrm{(D) \ } 4\qquad \mathrm{(E) \ }  5</math>
  
 
== Solution ==
 
== Solution ==

Revision as of 22:44, 10 July 2006

Problem

How many sets of two or more consecutive positive integers have a sum of $15$?

$\mathrm{(A) \ } 1\qquad \mathrm{(B) \ } 2\qquad \mathrm{(C) \ } 3\qquad \mathrm{(D) \ } 4\qquad \mathrm{(E) \ }  5$

Solution

See also