Difference between revisions of "2016 AMC 10A Problems/Problem 19"
Aops12142015 (talk | contribs) (→Solution 2) |
Aops12142015 (talk | contribs) (→Solution 2 (Coordinate Bash)) |
||
Line 26: | Line 26: | ||
Since <math>\triangle APD \sim \triangle EPB,</math> <math>\frac{DP}{PB}=\frac{AD}{BE}=3.</math> Similarly, <math>\frac{DQ}{QB}=\frac{3}{2}</math>. Call the hypotonuse <math>l</math>. This means that <math>{DQ}=\frac{3l}{5}</math>. Applying similar triangles to <math>{ADP}</math> and <math>{BEP}</math>, we see that <math>\frac{PD}{PB}=\frac{3}{1}</math>. Thus <math>PB=\frac{1}{4}l</math>. Therefore, <math>r:s:t=\frac{1}{4}:\frac{2}{5}-\frac{1}{4}:\frac{3}{5}=5:3:12,</math> so <math>r+s+t=\boxed{\textbf{(E) }20.}</math> | Since <math>\triangle APD \sim \triangle EPB,</math> <math>\frac{DP}{PB}=\frac{AD}{BE}=3.</math> Similarly, <math>\frac{DQ}{QB}=\frac{3}{2}</math>. Call the hypotonuse <math>l</math>. This means that <math>{DQ}=\frac{3l}{5}</math>. Applying similar triangles to <math>{ADP}</math> and <math>{BEP}</math>, we see that <math>\frac{PD}{PB}=\frac{3}{1}</math>. Thus <math>PB=\frac{1}{4}l</math>. Therefore, <math>r:s:t=\frac{1}{4}:\frac{2}{5}-\frac{1}{4}:\frac{3}{5}=5:3:12,</math> so <math>r+s+t=\boxed{\textbf{(E) }20.}</math> | ||
− | ==Solution 2 | + | ==Solution 2== |
We can set coordinates for the points. <math>D=(0,0), C=(6,0), B=(6,3),</math> and <math>A=(0,3)</math>. The line <math>BD</math>'s equation is <math>y = \frac{1}{2}x</math>, line <math>AE</math>'s equation is <math>y = -\frac{1}{6}x + 3</math>, and line <math>AF</math>'s equation is <math>y = -\frac{1}{3}x + 3</math>. Adding the equations of lines <math>BD</math> and <math>AE</math>, we find that the coordinates of <math>P</math> is <math>(\frac{9}{2},\frac{9}{4})</math>. Furthermore we find that the coordinates <math>Q</math> is <math>(\frac{18}{5}, \frac{9}{5})</math>. Using the [[Pythagorean Theorem]], the length of <math>QD</math> is <math>\sqrt{(\frac{18}{5})^2+(\frac{9}{5})^2} = \sqrt{\frac{405}{25}} = \frac{\sqrt{405}}{5} = \frac{9\sqrt{5}}{5}</math>, and the length of <math>DP</math> = <math>\sqrt{(\frac{9}{2})^2+(\frac{9}{4})^2} = \sqrt{\frac{81}{4} + \frac{81}{16}} = \sqrt{\frac{405}{16}} = \frac{\sqrt{405}}{4} = \frac{9\sqrt{5}}{4}.</math> <math>PQ = DP - DQ = \frac{9\sqrt{5}}{5} - \frac{9\sqrt{5}}{4} = \frac{9\sqrt{5}}{20}.</math> The length of <math>DB = \sqrt{6^2 + 3^2} = \sqrt{45} = 3\sqrt{5}</math>. Then <math>BP= 3\sqrt{5} - \frac{9\sqrt{5}}{4} = \frac{3\sqrt{5}}{4}.</math> The ratio <math>BP : PQ : QD = \frac{3\sqrt{5}}{4} : \frac{9\sqrt{5}}{20} : \frac{9\sqrt{5}}{5} = 15\sqrt{5} : 9\sqrt{5} : 36\sqrt{5} = 15 : 9 : 36 = 5 : 3 : 12.</math> Then <math>r, s,</math> and <math>t</math> is <math>5, 3,</math> and <math>12</math>, respectively. The problem tells us to find <math>r + s + t</math>, so <math>5 + 3 + 12 = \boxed{\textbf{(E) }20}</math> | We can set coordinates for the points. <math>D=(0,0), C=(6,0), B=(6,3),</math> and <math>A=(0,3)</math>. The line <math>BD</math>'s equation is <math>y = \frac{1}{2}x</math>, line <math>AE</math>'s equation is <math>y = -\frac{1}{6}x + 3</math>, and line <math>AF</math>'s equation is <math>y = -\frac{1}{3}x + 3</math>. Adding the equations of lines <math>BD</math> and <math>AE</math>, we find that the coordinates of <math>P</math> is <math>(\frac{9}{2},\frac{9}{4})</math>. Furthermore we find that the coordinates <math>Q</math> is <math>(\frac{18}{5}, \frac{9}{5})</math>. Using the [[Pythagorean Theorem]], the length of <math>QD</math> is <math>\sqrt{(\frac{18}{5})^2+(\frac{9}{5})^2} = \sqrt{\frac{405}{25}} = \frac{\sqrt{405}}{5} = \frac{9\sqrt{5}}{5}</math>, and the length of <math>DP</math> = <math>\sqrt{(\frac{9}{2})^2+(\frac{9}{4})^2} = \sqrt{\frac{81}{4} + \frac{81}{16}} = \sqrt{\frac{405}{16}} = \frac{\sqrt{405}}{4} = \frac{9\sqrt{5}}{4}.</math> <math>PQ = DP - DQ = \frac{9\sqrt{5}}{5} - \frac{9\sqrt{5}}{4} = \frac{9\sqrt{5}}{20}.</math> The length of <math>DB = \sqrt{6^2 + 3^2} = \sqrt{45} = 3\sqrt{5}</math>. Then <math>BP= 3\sqrt{5} - \frac{9\sqrt{5}}{4} = \frac{3\sqrt{5}}{4}.</math> The ratio <math>BP : PQ : QD = \frac{3\sqrt{5}}{4} : \frac{9\sqrt{5}}{20} : \frac{9\sqrt{5}}{5} = 15\sqrt{5} : 9\sqrt{5} : 36\sqrt{5} = 15 : 9 : 36 = 5 : 3 : 12.</math> Then <math>r, s,</math> and <math>t</math> is <math>5, 3,</math> and <math>12</math>, respectively. The problem tells us to find <math>r + s + t</math>, so <math>5 + 3 + 12 = \boxed{\textbf{(E) }20}</math> |
Revision as of 10:54, 11 February 2016
Contents
[hide]Problem
In rectangle and . Point between and , and point between and are such that . Segments and intersect at and , respectively. The ratio can be written as where the greatest common factor of and is What is ?
Solution 1
Since Similarly, . Call the hypotonuse . This means that . Applying similar triangles to and , we see that . Thus . Therefore, so
Solution 2
We can set coordinates for the points. and . The line 's equation is , line 's equation is , and line 's equation is . Adding the equations of lines and , we find that the coordinates of is . Furthermore we find that the coordinates is . Using the Pythagorean Theorem, the length of is , and the length of = The length of . Then The ratio Then and is and , respectively. The problem tells us to find , so
See Also
2016 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.