Difference between revisions of "1962 AHSME Problems/Problem 38"
(→Solution) |
m (→Solution 1) |
||
Line 8: | Line 8: | ||
<math> \textbf{(A)}\ 3\qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 11\qquad\textbf{(E)}\ 17 </math> | <math> \textbf{(A)}\ 3\qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 11\qquad\textbf{(E)}\ 17 </math> | ||
− | ==Solution | + | ==Solution== |
Let <math>a^2</math> <math>=</math> original population count, <math>b^2+1</math> <math>=</math> the second population count, and <math>c^2</math> <math>=</math> the third population count | Let <math>a^2</math> <math>=</math> original population count, <math>b^2+1</math> <math>=</math> the second population count, and <math>c^2</math> <math>=</math> the third population count | ||
We first see that <math>a^2 + 100 = b^2 + 1</math> or <math>99</math> <math>=</math> <math>b^2-a^2</math>. | We first see that <math>a^2 + 100 = b^2 + 1</math> or <math>99</math> <math>=</math> <math>b^2-a^2</math>. | ||
Line 17: | Line 17: | ||
<math>1)</math> <math>b+a</math> <math>=</math> <math>11</math> and <math>b-a</math> <math>=</math> <math>9</math>. | <math>1)</math> <math>b+a</math> <math>=</math> <math>11</math> and <math>b-a</math> <math>=</math> <math>9</math>. | ||
Adding the two equations we get <math>2b</math> <math>=</math> <math>20</math> or <math>b</math> <math>=</math> <math>10</math>, which means <math>a</math> <math>=</math> <math>1</math>. | Adding the two equations we get <math>2b</math> <math>=</math> <math>20</math> or <math>b</math> <math>=</math> <math>10</math>, which means <math>a</math> <math>=</math> <math>1</math>. | ||
− | But looking at the restriction that the | + | But looking at the restriction that the second population + <math>100</math> <math>=</math> third population... |
<math>10^2</math> <math>+</math> <math>1</math> <math>+</math> <math>100</math> <math>=</math> <math>201</math> <math>\neq</math> a perfect square. | <math>10^2</math> <math>+</math> <math>1</math> <math>+</math> <math>100</math> <math>=</math> <math>201</math> <math>\neq</math> a perfect square. | ||
Revision as of 20:28, 19 February 2016
Problem
The population of Nosuch Junction at one time was a perfect square. Later, with an increase of , the population was one more than a perfect square. Now, with an additional increase of
, the population is again a perfect square.
The original population is a multiple of:
Solution
Let
original population count,
the second population count, and
the third population count
We first see that
or
.
We then factor the right side getting
.
Since we can only have an nonnegative integral population, clearly
and both factor
.
We factor
into
There are a few cases to look at:
and
.
Adding the two equations we get
or
, which means
.
But looking at the restriction that the second population +
third population...
a perfect square.
and
.
Adding the two equations we get
or
, which means
.
Looking at the same restriction, we get
+
+
+
, which is NOT a perfect square.
Finally,
and
.
or
, which means
.
Looking at the same restriction, we get
+
+
+
. Thus we find that the original population is
. Or
is a multiple of