Difference between revisions of "1989 USAMO Problems/Problem 1"

(add solution)
m
 
(4 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
For each positive integer <math>n</math>, let
 
<div style="text-align:center;">
 
<math>S_n = 1 + \frac 12 + \frac 13 + \cdots + \frac 1n</math>
 
  
<math>T_n = S_1 + S_2 + S_3 + \cdots + S_n</math>
+
For each positive [[integer]] <math>n</math>, let
 
+
<cmath> \begin{align*}
<math>U_n = \frac{T_1}{2} + \frac{T_2}{3} + \frac{T_3}{4} + \cdots + \frac{T_n}{n+1}</math>.
+
S_n &= 1 + \frac 12 + \frac 13 + \cdots + \frac 1n \
</div>
+
T_n &= S_1 + S_2 + S_3 + \cdots + S_n \
Find, with proof, integers <math>0 < a,\ b,\ c,\ d < 1000000</math> such that <math>\displaystyle T_{1988} = a S_{1989} - b</math> and <math>\displaystyle U_{1988} = c S_{1989} - d</math>.
+
U_n &= \frac{T_1}{2} + \frac{T_2}{3} + \frac{T_3}{4} + \cdots + \frac{T_n}{n+1}.
 +
\end{align*} </cmath>
 +
Find, with proof, integers <math>0 < a,\ b,\ c,\ d < 1000000</math> such that <math>T_{1988} = a S_{1989} - b</math> and <math>U_{1988} = c S_{1989} - d</math>.
  
 
== Solution ==
 
== Solution ==
Let us prove that <math>\displaystyle T_{n-1} = nS_n - n</math>. Expanding:
 
  
:<math>\left(1\right) + \left(1 + \frac 12\right) + \ldots + \left(1 + \frac 12 + \frac 13 + \ldots + \frac 1n\right) = n\left(\sum_{i=1}^n \frac 1i\right) - n \displaystyle</math>
+
We note that for all integers <math>n \ge 2</math>,
 +
<cmath>\begin{align*}
 +
T_{n-1} &= 1 + \left(1 + \frac 12\right) + \left(1 + \frac 12 + \frac 13\right) + \ldots + \left(1 + \frac 12 + \frac 13 + \ldots + \frac 1{n-1}\right) \
 +
&= \sum_{i=1}^{n-1} \left(\frac {n-i}i\right) = n\left(\sum_{i=1}^{n-1} \frac{1}{i}\right) - (n-1) = n\left(\sum_{i=1}^{n} \frac{1}{i}\right) - n \
 +
&= n \cdot S_{n} - n .
 +
\end{align*}</cmath>
  
Grouping like terms, there are <math>n-1</math> <math>\displaystyle 1</math>s, <math>n-2</math> <math>\frac 12</math>s, and so on:
+
It then follows that
 +
<cmath>\begin{align*}
 +
U_{n-1} &= \sum_{i=2}^{n} \frac{T_{i-1}}{i} = \sum_{i=2}^{n}\ (S_{i} - 1) = T_{n-1} + S_n - (n-1) - S_1 \
 +
&= \left(nS_n - n\right) + S_n - n = (n + 1)S_n - 2n .
 +
\end{align*}</cmath>
  
:<math>\left(\sum_{i=1}^{n-1} \frac 1i \cdot (n - i)\right) = n\left(\sum_{i=1}^n \frac 1i\right) - n</math>
+
If we let <math>n=1989</math>, we see that <math>(a,b,c,d) = (1989,1989,1990, 2\cdot 1989)</math> is a suitable solution.  <math>\blacksquare</math>
:<math>\left(\sum_{I=1}^{n-1} \frac ni\right) - (n - 1) =\left(\sum_{i=1}^n \frac ni\right) - n</math>
 
:<math>-(n-1) = n \cdot \frac 1n - n \Longrightarrow 1 - n = 1 - n</math>
 
  
which completes our proof. Thus, for <math>\displaystyle n = 1989</math>, we have that <math>\displaystyle T_{1988} = 1989 S_{1989} - 1989</math>, and so <math>a = b = 1989 \displaystyle</math>.
+
Notice that it is also possible to use induction to prove the equations relating <math>T_n</math> and <math>U_n</math> with <math>S_n</math>.
  
For the second part, use our previously derived identity to determine <math>\displaystyle U_{n-1}</math> in terms of <math>\displaystyle S_n</math>. The problem simplifies to:
 
  
:<math>U_{n-1} = \frac{2 S_2 - 2}{2} +  \frac{3 S_3 - 3}{3}  + \ldots + \frac{nS_{n} - n}{n}</math>
+
{{alternate solutions}}
:<math>=S_2 + S_3 + \ldots S_{n} - (n - 1) + \left(S_1 - S_1\right)</math>
 
:<math>\displaystyle = T_{n-1} + S_n - (n-1)</math>
 
:<math>\displaystyle = \left(nS_n - n\right) + S_n - n + 1 - S_1</math>
 
:<math>\displaystyle = (n + 1)S_n - 2n</math>
 
  
Thus, we have <math>\displaystyle U_{n-1} = (n+1)S_n - 2n</math>. For <math>\displaystyle n = 1989</math>, we get that <math>\displaystyle c = 1990</math> and <math>d = 2 \cdot 1989 = 3978</math>
+
== See Also ==
  
== See also ==
 
 
{{USAMO box|year=1989|before=First question|num-a=2}}
 
{{USAMO box|year=1989|before=First question|num-a=2}}
 +
 +
* [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=356633#p356633 Discussion on AoPS/MathLinks]
 +
{{MAA Notice}}
  
 
[[Category:Olympiad Algebra Problems]]
 
[[Category:Olympiad Algebra Problems]]

Latest revision as of 18:10, 18 July 2016

Problem

For each positive integer $n$, let \begin{align*} S_n &= 1 + \frac 12 + \frac 13 + \cdots + \frac 1n \\ T_n &= S_1 + S_2 + S_3 + \cdots + S_n \\ U_n &= \frac{T_1}{2} + \frac{T_2}{3} + \frac{T_3}{4} + \cdots + \frac{T_n}{n+1}. \end{align*} Find, with proof, integers $0 < a,\ b,\ c,\ d < 1000000$ such that $T_{1988} = a S_{1989} - b$ and $U_{1988} = c S_{1989} - d$.

Solution

We note that for all integers $n \ge 2$, \begin{align*} T_{n-1} &= 1 + \left(1 + \frac 12\right) + \left(1 + \frac 12 + \frac 13\right) + \ldots + \left(1 + \frac 12 + \frac 13 + \ldots + \frac 1{n-1}\right) \\  &= \sum_{i=1}^{n-1} \left(\frac {n-i}i\right) = n\left(\sum_{i=1}^{n-1} \frac{1}{i}\right) - (n-1) = n\left(\sum_{i=1}^{n} \frac{1}{i}\right) - n \\ &= n \cdot S_{n} - n .  \end{align*}

It then follows that \begin{align*} U_{n-1} &= \sum_{i=2}^{n} \frac{T_{i-1}}{i} = \sum_{i=2}^{n}\ (S_{i} - 1) = T_{n-1} + S_n - (n-1) - S_1 \\ &= \left(nS_n - n\right) + S_n - n = (n + 1)S_n - 2n . \end{align*}

If we let $n=1989$, we see that $(a,b,c,d) = (1989,1989,1990, 2\cdot 1989)$ is a suitable solution. $\blacksquare$

Notice that it is also possible to use induction to prove the equations relating $T_n$ and $U_n$ with $S_n$.


Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.

See Also

1989 USAMO (ProblemsResources)
Preceded by
First question
Followed by
Problem 2
1 2 3 4 5
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png