Difference between revisions of "1958 AHSME Problems/Problem 17"

m (See Also)
m (Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
If <math> x</math> is positive and <math> \log{x} \ge \log{2} \plus{} \frac{1}{2}\log{x}</math>, then:
+
If <math> x</math> is positive and <math> \log{x} \ge \log{2} + \frac{1}{2}\log{x}</math>, then:
  
 
<math> \textbf{(A)}\ {x}\text{ has no minimum or maximum value}\qquad \
 
<math> \textbf{(A)}\ {x}\text{ has no minimum or maximum value}\qquad \

Revision as of 02:19, 29 June 2017

Problem

If $x$ is positive and $\log{x} \ge \log{2} + \frac{1}{2}\log{x}$, then:

$\textbf{(A)}\ {x}\text{ has no minimum or maximum value}\qquad \\ \textbf{(B)}\ \text{the maximum value of }{x}\text{ is }{1}\qquad \\ \textbf{(C)}\ \text{the minimum value of }{x}\text{ is }{1}\qquad \\ \textbf{(D)}\ \text{the maximum value of }{x}\text{ is }{4}\qquad \\ \textbf{(E)}\ \text{the minimum value of }{x}\text{ is }{4}$

Solution

$\fbox{}$

See Also

1958 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png