Difference between revisions of "1985 IMO Problems/Problem 1"
Lastovichke (talk | contribs) |
Lastovichke (talk | contribs) (→Solution 6) |
||
Line 50: | Line 50: | ||
Lemma 2. Let <math>I</math> be the in-center of <math>APB</math>. Then <math>ID = IC = IL</math> where <math>L</math> is the intersection of <math>PI</math> and <math>AB</math>. | Lemma 2. Let <math>I</math> be the in-center of <math>APB</math>. Then <math>ID = IC = IL</math> where <math>L</math> is the intersection of <math>PI</math> and <math>AB</math>. | ||
+ | |||
+ | |||
Revision as of 10:38, 1 October 2018
Contents
[hide]Problem
A circle has center on the side of the cyclic quadrilateral . The other three sides are tangent to the circle. Prove that .
Solutions
Solution 1
Let be the center of the circle mentioned in the problem. Let be the second intersection of the circumcircle of with . By measures of arcs, . It follows that . Likewise, , so , as desired.
Solution 2
Let be the center of the circle mentioned in the problem, and let be the point on such that . Then , so is a cyclic quadrilateral and is in fact the of the previous solution. The conclusion follows.
Solution 3
Let the circle have center and radius , and let its points of tangency with be , respectively. Since is clearly a cyclic quadrilateral, the angle is equal to half the angle . Then
Likewise, . It follows that
,
Q.E.D.
Solution 4
We use the notation of the previous solution. Let be the point on the ray such that . We note that ; ; and ; hence the triangles are congruent; hence and . Similarly, . Therefore , Q.E.D.
Possible solution, maybe bogus?
The only way for AD and BC to be tangent to circle O and have AB pass through O is if and are both 90. But since ABCD is cyclic, the other angles must be 90 as well. Now call the point of tangency of CD E, and since AO=EO, AEOD is a square. Similarily, BCEO is a square, too, so DA=AO and CB=BO. Therefore, AD+BC=AB.
Solution 6
Let P be intersection of rays and .
Lemma 1. A circle passes through points , any points , on triangle and the in-center of if and only if .
Lemma 2. Let be the in-center of . Then where is the intersection of and .
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
Observations Observe by take , on extended and
1985 IMO (Problems) • Resources | ||
Preceded by First question |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 2 |
All IMO Problems and Solutions |