Difference between revisions of "Derivative/Formulas"
(→List of formulas) |
m (LaTeXed "c" in the top line) |
||
(8 intermediate revisions by 5 users not shown) | |||
Line 2: | Line 2: | ||
{| style="margin: 1em auto 1em auto; height:1000px" | {| style="margin: 1em auto 1em auto; height:1000px" | ||
− | | <math>\frac d{dx}(cf(x)) = c\left(\frac d{dx} f(x)\right)</math> | + | | <math>\frac d{dx}(cf(x)) = c\left(\frac d{dx} f(x)\right)</math> where <math>c</math> is a constant |
|- | |- | ||
− | | <math>(f(x)+g(x))' = f'(x) + g'(x)</math> | + | | <math>(f(x) + g(x))' = f'(x) + g'(x)</math> |
+ | |- | ||
+ | | <math>(f(x)-g(x))'=f'(x)-g'(x)</math> | ||
+ | |- | ||
+ | | <math>\left(u(x)\times v(x)\right)'=u(x)v'(x)+u'(x)v(x)</math> | ||
|- | |- | ||
| <math>\left(\frac{u(x)}{v(x)}\right)' = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}</math> | | <math>\left(\frac{u(x)}{v(x)}\right)' = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}</math> | ||
Line 11: | Line 15: | ||
|- | |- | ||
| <math>\frac d{dx} x^n = n x^{n-1}</math> | | <math>\frac d{dx} x^n = n x^{n-1}</math> | ||
+ | |- | ||
+ | | <math>\frac d{dx} (f(x))^n =n f(x)^{n-1} f'(x)</math> | ||
|- | |- | ||
| <math>\frac d{dx} \sin x = \cos x</math> | | <math>\frac d{dx} \sin x = \cos x</math> | ||
Line 38: | Line 44: | ||
| <math>\frac d{dx} \arctan x = \frac 1{1+x^2}</math> | | <math>\frac d{dx} \arctan x = \frac 1{1+x^2}</math> | ||
|- | |- | ||
− | | <math>\frac d{dx} \mathrm{arcsec \ } x = \frac 1{\ | + | | <math>\frac d{dx} \mathrm{arcsec \ } x = \frac 1{\lvert x \rvert \sqrt{x^2-1}}</math> |
|- | |- | ||
| <math>\frac d{dx} \mathrm{arccsc \ } x = - \frac 1{x\sqrt{x^2 - 1}}</math> | | <math>\frac d{dx} \mathrm{arccsc \ } x = - \frac 1{x\sqrt{x^2 - 1}}</math> | ||
|- | |- | ||
− | | <math>\frac d{dx} \arccot x = - \frac 1{1+x^2}</math> | + | | <math>\frac d{dx} \mathrm{arccot \ } x = - \frac 1{1+x^2}</math> |
+ | |} | ||
+ | |||
+ | == Notation == | ||
+ | The following are commonly recognized notations for expressing the [[derivative]] of a [[function]]. | ||
+ | |||
+ | {| class="wikitable" style="text-align:center; margin: 1em auto 1em auto; height:600px; width:300px" | ||
+ | | colspan="2" | '''Euler's notation''' | ||
+ | |- | ||
+ | | First derivative || <math>D_xf(x)</math> or <math>Du</math> | ||
+ | |- | ||
+ | | Second derivative || <math>D_x^2f(x)</math> or <math>D^2u</math> | ||
+ | |- | ||
+ | | Third derivative || <math>D_x^3f(x)</math> or <math>D^3u</math> | ||
+ | |- | ||
+ | | <math>n</math>th derivative || <math>D_x^nf(x)</math> or <math>D^nu</math> | ||
+ | |- | ||
+ | | colspan="2" | '''Lagrange's notation''' | ||
+ | |- | ||
+ | | First derivative || <math>f'(x)</math> | ||
+ | |- | ||
+ | | Second derivative || <math>f''(x)</math> | ||
+ | |- | ||
+ | | Third derivative || <math>f'''(x)</math> | ||
+ | |- | ||
+ | | <math>n</math>th derivative || <math>f^{(n)}(x)</math> | ||
+ | |- | ||
+ | | colspan="2" | '''Leibniz's notation''' | ||
+ | |- | ||
+ | | First derivative || <math>\frac{dy}{dx}</math> | ||
+ | |- | ||
+ | | Second derivative || <math>\frac{d^2y}{dx^2}</math> | ||
+ | |- | ||
+ | | <math>n</math>th derivative || <math>\frac{d^ny}{dx^n}</math> | ||
+ | |- | ||
+ | | colspan="2" | '''Newton's notation''' | ||
+ | |- | ||
+ | | First derivative || <math>\dot{x}</math> | ||
+ | |- | ||
+ | | Second derivative || <math>\ddot{x}</math> | ||
|} | |} | ||
Latest revision as of 15:23, 11 March 2022
List of formulas
where is a constant |
Notation
The following are commonly recognized notations for expressing the derivative of a function.
Euler's notation | |
First derivative | or |
Second derivative | or |
Third derivative | or |
th derivative | or |
Lagrange's notation | |
First derivative | |
Second derivative | |
Third derivative | |
th derivative | |
Leibniz's notation | |
First derivative | |
Second derivative | |
th derivative | |
Newton's notation | |
First derivative | |
Second derivative |