Difference between revisions of "2024 AMC 12B Problems/Problem 22"
Countmath1 (talk | contribs) (→Solution 5) |
|||
(36 intermediate revisions by 7 users not shown) | |||
Line 12: | Line 12: | ||
==Solution 1== | ==Solution 1== | ||
− | We will | + | Let <math>AB=c</math>, <math>BC=a</math>, <math>AC=b</math>. According to the law of sines, |
+ | <cmath>\frac{b}{a}=\frac{\sin \angle B}{\sin \angle A}</cmath> | ||
+ | <cmath>=2\cos \angle A</cmath> | ||
+ | |||
+ | According to the law of cosines, | ||
+ | <cmath>\cos \angle A=\frac{b^2+c^2-a^2}{2bc}</cmath> | ||
+ | |||
+ | Hence, | ||
+ | <cmath>\frac{b}{a}=\frac{b^2+c^2-a^2}{bc}</cmath> | ||
+ | |||
+ | This simplifies to <math>b^2=a(a+c)</math>. We want to find the positive integer solution <math>(a, b, c)</math> to this equation such that <math>a, b, c</math> forms a triangle, and <math>a+b+c</math> is minimized. We proceed by casework on the value of <math>b</math>. Remember that <math>a<a+c</math>. | ||
+ | |||
+ | Case <math>1</math>: <math>b=1</math> | ||
+ | |||
+ | Clearly, this case yields no valid solutions. | ||
+ | |||
+ | Case <math>2</math>: <math>b=2</math> | ||
+ | |||
+ | For this case, we must have <math>a=1</math> and <math>c=3</math>. However, <math>(1, 2, 3)</math> does not form a triangle. Hence this case yields no valid solutions. | ||
+ | |||
+ | Case <math>3</math>: <math>b=3</math> | ||
+ | |||
+ | For this case, we must have <math>a=1</math> and <math>c=9</math>. However, <math>(1, 3, 9)</math> does not form a triangle. Hence this case yields no valid solutions. | ||
+ | |||
+ | Case <math>4</math>: <math>b=4</math> | ||
+ | |||
+ | For this case, <math>a=1</math> and <math>c=15</math>, or <math>a=2</math> and <math>c=6</math>. As one can check, this case also yields no valid solutions | ||
+ | |||
+ | Case <math>5</math>: <math>b=5</math> | ||
+ | |||
+ | For this case, we must have <math>a=1</math> and <math>c=24</math>. There are no valid solutions | ||
+ | |||
+ | Case <math>6</math>: <math>b=6</math> | ||
+ | |||
+ | For this case, <math>a=2</math> and <math>c=16</math>, or <math>a=4</math> and <math>c=5</math>, or <math>a=3</math> and <math>c=9</math>. The only valid solution for this case is <math>(4, 6, 5)</math>, which yields a perimeter of <math>15</math>. | ||
+ | |||
+ | When <math>b\ge 7</math>, it is easy to see that <math>a+c>7</math>. Hence <math>a+b+c>14</math>, which means <math>a+b+c\ge15</math>. Therefore, the answer is <math>\fbox{\textbf{(C) }15}</math> | ||
+ | |||
+ | ~tsun26 | ||
+ | |||
+ | ==Solution 2 (Similar to Solution 1)== | ||
+ | Let <math>\overline{BC}=a</math>, <math>\overline{AC}=b</math>, <math>\overline{AB}=c</math>. Extend <math>C</math> to point <math>D</math> on <math>\overline{AB}</math> such that <math>\angle ACD = \angle CAD</math>. This means <math>\triangle CDA</math> is isosceles, so <math>CD=DA</math>. Since <math>\angle CDB</math> is the exterior angle of <math>\triangle CDA</math>, we have <cmath>\angle CDB=m+m=2m=\angle CBD.</cmath> Thus, <math>\triangle CBD</math> is isosceles, so <math>CB=CD=DA=a.</math> Then, draw the altitude of <math>\triangle CBD</math>, from <math>C</math> to <math>\overline{BD}</math>, and let this point be <math>H</math>. Let <math>BH=HD=x</math>. Then, by Pythagorean Theorem, | ||
+ | \begin{align*} | ||
+ | CH^2&=a^2-x^2 \ | ||
+ | CH^2&= b^2 - (c+x)^2.\ | ||
+ | \end{align*} | ||
+ | Thus, <cmath>a^2-x^2=b^2-(c-x)^2.</cmath> Solving for <math>x</math>, we have <math>x=\frac{a^2-b^2+c^2}{2c}.</math> Since <math>2x=c-a</math>, we have <cmath>c-a=\frac{a^2-b^2+c^2}{c},</cmath> and simplifying, we get <math>b^2=a^2+ac.</math> Now we can consider cases on what <math>a</math> is. (Note: Although there looks to be quite a few cases, they are just trivial and usually only take up to a few seconds max). | ||
+ | |||
+ | Case <math>1</math>: <math>a=1</math>. | ||
+ | |||
+ | This means <math>b^2=c+1</math>, so the least possible values are <math>b=2</math>, <math>c=3</math>, but this does not work as it does not satisfy the triangle inequality. Similarly, <math>b=3</math>, <math>c=8</math> also does not satisfy it. Anything larger goes beyond the answer choices, so we stop checking this case. | ||
+ | |||
+ | Case <math>2</math>: <math>a=2</math> | ||
+ | This means <math>b^2=2c+4</math>, so the least possible values for <math>b</math> and <math>c</math> are <math>b=4</math>,<math>c=6</math>, but this does not satisfy the triangle inequality, and anything larger does not satisfy the answer choices. | ||
+ | |||
+ | Case <math>3</math>: <math>a=3</math> | ||
+ | This means <math>b^2=3c+9</math>, and the least possible value for <math>b</math> is <math>b=6</math>, which occurs when <math>c=9</math>. Unfortunately, this also does not satisfy the triangle inequality, and similarly, any <math>b > 6</math> means the perimeter will get too big. | ||
+ | |||
+ | Case <math>4</math>: <math>a=4</math> | ||
+ | This means <math>b^2=4c+16</math>, so we have <math>b=6,c=5,a=4</math>, so the least possible perimeter so far is <math>4+5+6=15</math>. | ||
+ | |||
+ | Case <math>5</math>: <math>a=5</math> | ||
+ | We have <math>b^2=5c+25</math>, so least possible value for <math>b</math> is <math>b=10</math>, which already does not work as <math>a=5</math>, and the minimum perimeter is <math>15</math> already. | ||
+ | |||
+ | Case <math>6</math>: <math>a=6</math> | ||
+ | We have <math>b^2=6c+36</math>, so <math>b=10</math>, which already does not work. | ||
+ | |||
+ | Then, notice that when <math>a\geq 7</math>, we also must have <math>b\geq8</math> and <math>c\geq1</math>, so <math>a+b+c \geq 16</math>, so the least possible perimeter is <math>\boxed{\textbf{(C) }15}.</math> | ||
+ | |||
+ | ~evanhliu2009 | ||
+ | |||
+ | ==Solution 3 (Trigonometry)== | ||
+ | |||
+ | <cmath> \frac{a}{sin(A)} = \frac{a}{sin(B)} = \frac{c}{sin(C)} </cmath> | ||
+ | <cmath> \frac{a}{sin(A)} = \frac{a}{sin(2A)} = \frac{c}{sin(\pi- 3A)} = \frac{c}{ sin(3A)} </cmath> | ||
+ | <cmath> \frac{a}{sin(A)} = \frac{a}{2sin(A)cos(A)} = \frac{c}{3sin(A) - 4sin^3(A)} </cmath> | ||
+ | <cmath> b = 2cos(A)a </cmath> | ||
+ | <cmath> c = (3 - 4sin^2(A) ) a = (4cos^2(A)-1)a </cmath> | ||
+ | <cmath> A+B = A+2A < 180^\circ </cmath> | ||
+ | <cmath> A < 60^\circ , \frac{1}{2} < cos(A) < 1 </cmath> | ||
+ | |||
+ | <cmath> a:b:c = 1: 2cos(A) : 4cos^2(A)-1 </cmath> | ||
+ | cos(A) must be rational, let's evaluate some small values | ||
+ | |||
+ | case #1: cos(A) = <math>\frac{1}{2}</math> invalid since = <math>\frac{1}{2}</math> | ||
+ | |||
+ | case #2: cos(A) = <math>\frac{1}{3}</math> invalid since < <math>\frac{1}{2}</math> | ||
+ | |||
+ | case #3: cos(A) = <math>\frac{2}{3}</math> give <math>{1: \frac{4}{3} : \frac{7}{9} }</math> with side (9:12:7) , perimeter = 28 | ||
+ | |||
+ | case #4: cos(A) = <math>\frac{1}{4}</math> invalid since < <math>\frac{1}{2}</math> | ||
+ | |||
+ | case #5: cos(A) = <math>\frac{3}{4}</math> give <math>{1: \frac{3}{2} : \frac{5}{4} }</math> with side (4:6:5), perimeter = 15 | ||
+ | |||
+ | case #6: cos(A) = <math>\frac{3}{5}</math> give <math>{1: \frac{6}{5} : \frac{11}{25} }</math> with side (25:30:11) | ||
+ | |||
+ | case #7: cos(A) = <math>\frac{4}{5}</math> give <math>{1: \frac{8}{5} : \frac{39}{25} }</math> with side (25:40:39) | ||
+ | |||
+ | case #8: cos(A) = <math>\frac{4}{6}</math> same as <math>\frac{2}{3}</math> | ||
+ | |||
+ | case #9: cos(A) = <math>\frac{5}{6}</math> give <math>{1: \frac{5}{3} : \frac{16}{9} }</math> with side (9:15:16) | ||
+ | |||
+ | case #10: when a <math>\geq</math> 7, b =2cos(A)*a > 2* <math>\frac{1}{2}</math>*7 = 7 , a+b+c > 15 | ||
+ | |||
+ | <math>\boxed{\textbf{(C) }15}</math> | ||
+ | |||
+ | ~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso] | ||
+ | |||
+ | ==Video Solution 1 by TheSpreadTheMathLove== | ||
+ | https://www.youtube.com/watch?v=N7cNhAx9ifE&t=0s | ||
+ | |||
+ | ==Solution 4== | ||
+ | Draw the circumcircle of <math>\triangle{ABC}</math> and let the angle bisector of <math>\angle{B}</math> meet the circle at <math>D</math> | ||
+ | |||
+ | By fact 5 we have <math>CD=AD, \angle{CBD}=\angle{ABD}=\angle{CAB}=\angle{DAC}, \angle{CBA}=\angle{DAB}</math>, thus <math>AC=BD, CD=CB</math> | ||
+ | |||
+ | By Ptolemy, we have <math>c^2=(a+b)CD, CD=\frac{c^2}{a+b}=a, a^2+ab=c^2</math>. Try some numbers and the answer is <math>(4,5,6)\implies \boxed{15}</math> | ||
+ | |||
+ | ~Bluesoul | ||
+ | |||
+ | ==Solution 5== | ||
+ | |||
+ | Let ∠A=θ, then ∠B=2θ | ||
+ | |||
+ | Find D on AB such that ∠ACD=θ Thus, ∠CDB=∠A+∠ACD=2θ So AD=CD=BD | ||
+ | |||
+ | Find E on BD such that CE⊥BD Apparently, this gives E the mid-point of BD | ||
+ | |||
+ | Let the length of BC be x. Then AB can be expressed as AD+BD=AD+2BE=x+2xcos2θ | ||
+ | |||
+ | Since CE=xsin2θ The length of AC can be expressed as 2xcosθ(using double angle formula) | ||
+ | |||
+ | Now we need to determine the range of θ. | ||
+ | |||
+ | The above conditions are only valid if ∠B is an acute angle.(the strict proof will be shown in the end*) So θ<45°, this yields cosθ∈(<math>\frac{\sqrt{2}}{2}</math> ,1) | ||
+ | |||
+ | Let cosθ=<math>\frac{p}{q}</math> ,where (p,q)=1 | ||
+ | |||
+ | To minimize the perimeter, the denominator needs to be as small as possible. In this way, a small x can be used to integrate the side length. | ||
+ | |||
+ | Test q=2, one half is not in the range | ||
+ | |||
+ | Test q=3,one third and two thirds are not in the range (since 0.67<0.71) | ||
+ | |||
+ | Test q=4,three fourths is in the range. In this case, the smallest x that make side length integer is 4,since the side length is x,<math>\frac{5}{4}</math>x and <math>\frac{3}{2}</math>x So the perimeter= 4+5+6=15 | ||
+ | |||
+ | So <math>\boxed{\textbf{(C) }15}</math> is the correct answer | ||
+ | |||
+ | When q becomes bigger, a larger x is required to integrate the length, thus can not give the minimum perimeter. | ||
+ | |||
+ | If ∠B>90°, ∠A+∠B>135°,then∠C<45°. This will result in point D on the extension of AB, meaning that ∠CDB+∠CBD<180°. Hence, 2∠B<180°,∠B<90°, which clashes with our condition. If ∠B=90°,The triangle is isosceles right triangle. So the ratio of sides is 1:1:<math>\sqrt{2}</math> ,which,obviously, the length can not be all integers. | ||
+ | |||
+ | ~Tonyttian [https://artofproblemsolving.com/wiki/index.php/User:Tonyttian] | ||
+ | |||
+ | ==Solution 6== | ||
+ | Extend the angle bisector of <math>\angle B</math> to point <math>P</math> on <math>\overline{AC}.</math> We have <math>\triangle BPC \sim ABC,</math> so <math>\frac{m}{b} = \frac{b}{c},</math> yielding <math>m = \frac{b^2}{c}.</math> By the angle bisector theorem, <math>\frac{b}{a} = \frac{m}{n},</math> so <math>\frac{ma}{b} = \frac{ab}{c} = n</math> after substitution. We also have <math>m + n = c,</math> so | ||
+ | <cmath>\frac{b^2}{c} + \frac{ab}{c} = c \implies b^2 + ab = b(b + a) = c^2,</cmath> | ||
+ | for <math>a, b, c \in \mathbb{Z}_{> 0}.</math> We can't have <math>b=1</math> for any integral triangle. If <math>b = 2</math> then <math>2a + 4 = c^2</math>, which gives <math>c = 4</math> and <math>a = 6,</math> which fails the triangle inequality. If <math>b=3</math> then <math>a = 9</math> and <math>c = 6</math>, which fails again. If <math>b = 4</math>, then <math>(a, c) = (5, 6)</math>, which works and yields a perimeter of <math>15</math>. If <math>b=5</math>, then <math>(a, c) = (15, 10),</math> and if <math>b = 6</math>, then <math>(a, c) = (18, 12),</math> which fails again. | ||
+ | |||
+ | If <math>b \geq 7</math> then <math>a+b>7,</math> yielding a minimum perimeter of <math>\boxed{\textbf{(C)\ 15}},</math> which was already achieved. | ||
+ | |||
+ | -Benedict T (countmath1) | ||
+ | |||
+ | ==See also== | ||
+ | {{AMC12 box|year=2024|ab=B|num-b=21|num-a=23}} | ||
+ | {{MAA Notice}} |
Latest revision as of 17:16, 19 December 2024
Contents
[hide]Problem 22
Let be a triangle with integer side lengths and the property that . What is the least possible perimeter of such a triangle?
Solution 1
Let , , . According to the law of sines,
According to the law of cosines,
Hence,
This simplifies to . We want to find the positive integer solution to this equation such that forms a triangle, and is minimized. We proceed by casework on the value of . Remember that .
Case :
Clearly, this case yields no valid solutions.
Case :
For this case, we must have and . However, does not form a triangle. Hence this case yields no valid solutions.
Case :
For this case, we must have and . However, does not form a triangle. Hence this case yields no valid solutions.
Case :
For this case, and , or and . As one can check, this case also yields no valid solutions
Case :
For this case, we must have and . There are no valid solutions
Case :
For this case, and , or and , or and . The only valid solution for this case is , which yields a perimeter of .
When , it is easy to see that . Hence , which means . Therefore, the answer is
~tsun26
Solution 2 (Similar to Solution 1)
Let , , . Extend to point on such that . This means is isosceles, so . Since is the exterior angle of , we have Thus, is isosceles, so Then, draw the altitude of , from to , and let this point be . Let . Then, by Pythagorean Theorem,
Case : .
This means , so the least possible values are , , but this does not work as it does not satisfy the triangle inequality. Similarly, , also does not satisfy it. Anything larger goes beyond the answer choices, so we stop checking this case.
Case : This means , so the least possible values for and are ,, but this does not satisfy the triangle inequality, and anything larger does not satisfy the answer choices.
Case : This means , and the least possible value for is , which occurs when . Unfortunately, this also does not satisfy the triangle inequality, and similarly, any means the perimeter will get too big.
Case : This means , so we have , so the least possible perimeter so far is .
Case : We have , so least possible value for is , which already does not work as , and the minimum perimeter is already.
Case : We have , so , which already does not work.
Then, notice that when , we also must have and , so , so the least possible perimeter is
~evanhliu2009
Solution 3 (Trigonometry)
cos(A) must be rational, let's evaluate some small values
case #1: cos(A) = invalid since =
case #2: cos(A) = invalid since <
case #3: cos(A) = give with side (9:12:7) , perimeter = 28
case #4: cos(A) = invalid since <
case #5: cos(A) = give with side (4:6:5), perimeter = 15
case #6: cos(A) = give with side (25:30:11)
case #7: cos(A) = give with side (25:40:39)
case #8: cos(A) = same as
case #9: cos(A) = give with side (9:15:16)
case #10: when a 7, b =2cos(A)*a > 2* *7 = 7 , a+b+c > 15
Video Solution 1 by TheSpreadTheMathLove
https://www.youtube.com/watch?v=N7cNhAx9ifE&t=0s
Solution 4
Draw the circumcircle of and let the angle bisector of meet the circle at
By fact 5 we have , thus
By Ptolemy, we have . Try some numbers and the answer is
~Bluesoul
Solution 5
Let ∠A=θ, then ∠B=2θ
Find D on AB such that ∠ACD=θ Thus, ∠CDB=∠A+∠ACD=2θ So AD=CD=BD
Find E on BD such that CE⊥BD Apparently, this gives E the mid-point of BD
Let the length of BC be x. Then AB can be expressed as AD+BD=AD+2BE=x+2xcos2θ
Since CE=xsin2θ The length of AC can be expressed as 2xcosθ(using double angle formula)
Now we need to determine the range of θ.
The above conditions are only valid if ∠B is an acute angle.(the strict proof will be shown in the end*) So θ<45°, this yields cosθ∈( ,1)
Let cosθ= ,where (p,q)=1
To minimize the perimeter, the denominator needs to be as small as possible. In this way, a small x can be used to integrate the side length.
Test q=2, one half is not in the range
Test q=3,one third and two thirds are not in the range (since 0.67<0.71)
Test q=4,three fourths is in the range. In this case, the smallest x that make side length integer is 4,since the side length is x,x and x So the perimeter= 4+5+6=15
So is the correct answer
When q becomes bigger, a larger x is required to integrate the length, thus can not give the minimum perimeter.
If ∠B>90°, ∠A+∠B>135°,then∠C<45°. This will result in point D on the extension of AB, meaning that ∠CDB+∠CBD<180°. Hence, 2∠B<180°,∠B<90°, which clashes with our condition. If ∠B=90°,The triangle is isosceles right triangle. So the ratio of sides is 1:1: ,which,obviously, the length can not be all integers.
~Tonyttian [1]
Solution 6
Extend the angle bisector of to point on We have so yielding By the angle bisector theorem, so after substitution. We also have so for We can't have for any integral triangle. If then , which gives and which fails the triangle inequality. If then and , which fails again. If , then , which works and yields a perimeter of . If , then and if , then which fails again.
If then yielding a minimum perimeter of which was already achieved.
-Benedict T (countmath1)
See also
2024 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.