|
|
Line 1: |
Line 1: |
− | == Problem ==
| + | #REDIRECT[[2002 AMC 12B Problems/Problem 3]] |
− | | |
− | For how many positive integers <math>n</math> is <math>n^2-3n+2</math> a prime number?
| |
− | | |
− | <math> \mathrm{(A) \ } \text{none}\qquad \mathrm{(B) \ } \text{one}\qquad \mathrm{(C) \ } \text{two}\qquad \mathrm{(D) \ } \text{more than two, but finitely many}\qquad \mathrm{(E) \ } \text{infinitely many} </math>
| |
− | | |
− | == Solution ==
| |
− | | |
− | Factoring, <math>n^2-3n+2=(n-1)(n-2)</math>. As primes only have two factors, <math>1</math> and itself, <math>n-2=1</math>, so <math>n=3</math>. Hence, there is only one positive integer <math>n</math>. <math>\mathrm{ (B) \ }</math>
| |
− | | |
− | ==See Also==
| |
− | {{AMC10 box|year=2002|ab=B|num-b=5|num-a=7}}
| |
− | | |
− | [[Category:Introductory Number Theory Problems]] | |