Difference between revisions of "2009 AMC 8 Problems/Problem 4"
Mrdavid445 (talk | contribs) (Created page with "The five pieces shown below can be arranged to form four of the five figures shown in the choices. Which figure [b]cannot[/b] be formed? <asy> defaultpen(linewidth(0.6)); size(8...") |
MRENTHUSIASM (talk | contribs) (→Solution) |
||
(25 intermediate revisions by 12 users not shown) | |||
Line 1: | Line 1: | ||
− | + | ==Problem== | |
+ | The five pieces shown below can be arranged to form four of the five figures shown in the choices. Which figure <b>cannot</b> be formed? | ||
<asy> | <asy> | ||
defaultpen(linewidth(0.6)); | defaultpen(linewidth(0.6)); | ||
Line 20: | Line 21: | ||
draw(shift(4s,0)*p); | draw(shift(4s,0)*p); | ||
draw(shift(4s,2r)*p); | draw(shift(4s,2r)*p); | ||
− | draw(shift(4s,4r)*p);</asy> | + | draw(shift(4s,4r)*p); |
+ | </asy> | ||
<asy> | <asy> | ||
Line 42: | Line 44: | ||
</asy> | </asy> | ||
<cmath> \textbf{(A)}\qquad\qquad\qquad\textbf{(B)}\quad\qquad\qquad\textbf{(C)}\:\qquad\qquad\qquad\textbf{(D)}\quad\qquad\qquad\textbf{(E)} </cmath> | <cmath> \textbf{(A)}\qquad\qquad\qquad\textbf{(B)}\quad\qquad\qquad\textbf{(C)}\:\qquad\qquad\qquad\textbf{(D)}\quad\qquad\qquad\textbf{(E)} </cmath> | ||
+ | |||
+ | ==Solution== | ||
+ | The answer is <math>\boxed{\textbf{(B)}}</math> because the longest piece cannot fit into the figure. | ||
+ | |||
+ | Note that the five pieces can be arranged to form the figures in <math>\textbf{(A)},\textbf{(C)},\textbf{(D)},</math> and <math>\textbf{(E)},</math> as shown below: | ||
+ | |||
+ | <asy> | ||
+ | defaultpen(linewidth(0.6)); | ||
+ | size(80); | ||
+ | real r=0.5, s=1.5; | ||
+ | path p=origin--(1,0)--(1,1)--(0,1)--cycle; | ||
+ | fill(p,red); | ||
+ | fill(shift(s,r)*p,yellow); | ||
+ | fill(shift(s,-r)*p,yellow); | ||
+ | fill(shift(2s,2r)*p,green); | ||
+ | fill(shift(2s,0)*p,green); | ||
+ | fill(shift(2s,-2r)*p,green); | ||
+ | fill(shift(3s,3r)*p,cyan); | ||
+ | fill(shift(3s,-3r)*p,cyan); | ||
+ | fill(shift(3s,r)*p,cyan); | ||
+ | fill(shift(3s,-r)*p,cyan); | ||
+ | fill(shift(4s,-4r)*p,pink); | ||
+ | fill(shift(4s,-2r)*p,pink); | ||
+ | fill(shift(4s,0)*p,pink); | ||
+ | fill(shift(4s,2r)*p,pink); | ||
+ | fill(shift(4s,4r)*p,pink); | ||
+ | draw(p); | ||
+ | draw(shift(s,r)*p); | ||
+ | draw(shift(s,-r)*p); | ||
+ | draw(shift(2s,2r)*p); | ||
+ | draw(shift(2s,0)*p); | ||
+ | draw(shift(2s,-2r)*p); | ||
+ | draw(shift(3s,3r)*p); | ||
+ | draw(shift(3s,-3r)*p); | ||
+ | draw(shift(3s,r)*p); | ||
+ | draw(shift(3s,-r)*p); | ||
+ | draw(shift(4s,-4r)*p); | ||
+ | draw(shift(4s,-2r)*p); | ||
+ | draw(shift(4s,0)*p); | ||
+ | draw(shift(4s,2r)*p); | ||
+ | draw(shift(4s,4r)*p); | ||
+ | </asy> | ||
+ | |||
+ | <asy> | ||
+ | size(350); | ||
+ | defaultpen(linewidth(0.6)); | ||
+ | path p=origin--(1,0)--(1,1)--(0,1)--cycle; | ||
+ | pair[] a={(0,0), (0,1), (0,2), (0,3), (0,4), (1,0), (1,1), (1,2), (2,0), (2,1), (3,0), (3,1), (3,2), (3,3), (3,4)}; | ||
+ | pair[] b={(5,3), (5,4), (6,2), (6,3), (6,4), (7,1), (7,2), (7,3), (7,4), (8,0), (8,1), (8,2), (9,0), (9,1), (9,2)}; | ||
+ | pair[] c={(11,0), (11,1), (11,2), (11,3), (11,4), (12,1), (12,2), (12,3), (12,4), (13,2), (13,3), (13,4), (14,3), (14,4), (15,4)}; | ||
+ | pair[] d={(17,0), (17,1), (17,2), (17,3), (17,4), (18,0), (18,1), (18,2), (18,3), (18,4), (19,0), (19,1), (19,2), (19,3), (19,4)}; | ||
+ | pair[] e={(21,4), (22,1), (22,2), (22,3), (22,4), (23,0), (23,1), (23,2), (23,3), (23,4), (24,1), (24,2), (24,3), (24,4), (25,4)}; | ||
+ | |||
+ | fill((0,0)--(0,5)--(1,5)--(1,0)--cycle,pink); | ||
+ | fill((1,0)--(1,3)--(2,3)--(2,0)--cycle,green); | ||
+ | fill((2,0)--(2,2)--(3,2)--(3,0)--cycle,yellow); | ||
+ | fill((3,4)--(3,5)--(4,5)--(4,4)--cycle,red); | ||
+ | fill((3,0)--(3,4)--(4,4)--(4,0)--cycle,cyan); | ||
+ | |||
+ | fill((11,0)--(11,5)--(12,5)--(12,0)--cycle,pink); | ||
+ | fill((12,1)--(12,5)--(13,5)--(13,1)--cycle,cyan); | ||
+ | fill((13,2)--(13,5)--(14,5)--(14,2)--cycle,green); | ||
+ | fill((14,3)--(14,5)--(15,5)--(15,3)--cycle,yellow); | ||
+ | fill((15,4)--(15,5)--(16,5)--(16,4)--cycle,red); | ||
+ | |||
+ | fill((17,0)--(17,5)--(18,5)--(18,0)--cycle,pink); | ||
+ | fill((18,0)--(18,4)--(19,4)--(19,0)--cycle,cyan); | ||
+ | fill((18,4)--(18,5)--(19,5)--(19,4)--cycle,red); | ||
+ | fill((19,0)--(19,3)--(20,3)--(20,0)--cycle,green); | ||
+ | fill((19,3)--(19,5)--(20,5)--(20,3)--cycle,yellow); | ||
+ | |||
+ | fill((21,4)--(21,5)--(22,5)--(22,4)--cycle,red); | ||
+ | fill((22,1)--(22,5)--(23,5)--(23,1)--cycle,cyan); | ||
+ | fill((23,0)--(23,5)--(24,5)--(24,0)--cycle,pink); | ||
+ | fill((24,1)--(24,4)--(25,4)--(25,1)--cycle,green); | ||
+ | fill((24,4)--(24,5)--(26,5)--(26,4)--cycle,yellow); | ||
+ | |||
+ | int i; | ||
+ | for(int i=0; i<15; i=i+1) { | ||
+ | draw(shift(a[i])*p); | ||
+ | draw(shift(b[i])*p); | ||
+ | draw(shift(c[i])*p); | ||
+ | draw(shift(d[i])*p); | ||
+ | draw(shift(e[i])*p); | ||
+ | } | ||
+ | </asy> | ||
+ | <cmath>\textbf{(A)}\qquad\qquad\qquad\textbf{(B)}\quad\qquad\qquad\textbf{(C)}\qquad\qquad\qquad\textbf{(D)}\quad\qquad\qquad\textbf{(E)}</cmath> | ||
+ | ~Basketball8 ~MRENTHUSIASM | ||
+ | |||
+ | == Video Solution == | ||
+ | https://youtu.be/USVVURBLaAc?t=171 | ||
+ | |||
+ | ==See Also== | ||
+ | {{AMC8 box|year=2009|num-b=3|num-a=5}} | ||
+ | {{MAA Notice}} |
Latest revision as of 21:44, 25 November 2024
Contents
[hide]Problem
The five pieces shown below can be arranged to form four of the five figures shown in the choices. Which figure cannot be formed?
Solution
The answer is because the longest piece cannot fit into the figure.
Note that the five pieces can be arranged to form the figures in and as shown below:
~Basketball8 ~MRENTHUSIASM
Video Solution
https://youtu.be/USVVURBLaAc?t=171
See Also
2009 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.