Difference between revisions of "2019 AMC 10A Problems/Problem 14"

m (Solution 2(David C))
(Fixed formatting)
Line 79: Line 79:
 
==Solution 2==
 
==Solution 2==
  
We do casework to find values that work  
+
We do casework to find values that work:
  
Case 1: Four Parallel Lines= 0 Intersections
+
Case 1: Four parallel lines, giving <math>0</math> intersections
  
Case 2: Three Parallel Lines and One Line Intersecting the Three Lines= 3 Intersections
+
Case 2: Three parallel lines and one line intersecting the three lines, giving <math>3</math> intersections
  
Case 3: Two Parallel Lines with another Two Parallel Lines= 4 Intersections
+
Case 3: Two parallel lines with another two parallel lines, giving <math>4</math> intersections
  
Case 4: Two Parallel Lines with Two Other Non-Parallel Lines=5 Intersections
+
Case 4: Two parallel lines with two other non-parallel lines, giving <math>5</math> intersections
  
Case 5: Four Non-Parallel Lines All Intersecting Each Other at different points = 6 Intersections
+
Case 5: Four non-parallel lines all intersecting each other at different points, giving <math>6</math> intersections
  
Case 6: Four Non-Parallel Lines All Intersecting At One Point= 1 Intersection
+
Case 6: Four non-parallel lines all intersecting at one point, giving <math>1</math> intersection
  
You can find out that you cannot have 2 Intersections
+
You can find out that you cannot have <math>2</math> intersections.
  
 
<math>\text{sum}= 1+3+4+5+6=\boxed{19\implies (D)}</math>
 
<math>\text{sum}= 1+3+4+5+6=\boxed{19\implies (D)}</math>
Line 99: Line 99:
 
~David C
 
~David C
  
(Note: This is the same as above!!!)
+
(Note: This is the same as the above solution!)
  
 
==See Also==
 
==See Also==

Revision as of 18:47, 10 February 2019

The following problem is from both the 2019 AMC 10A #14 and 2019 AMC 12A #8, so both problems redirect to this page.

For a set of four distinct lines in a plane, there are exactly $N$ distinct points that lie on two or more of the lines. What is the sum of all possible values of $N$?

$\textbf{(A) } 14 \qquad \textbf{(B) } 16 \qquad \textbf{(C) } 18 \qquad \textbf{(D) } 19 \qquad \textbf{(E) } 21$

Solution 1

It is possible to obtain 0, 1, 3, 4, 5, and 6 intersections, as demonstrated in the following figures: [asy] unitsize(2cm); real d = 2.5; draw((-1,.6)--(1,.6),Arrows); draw((-1,.2)--(1,.2),Arrows); draw((-1,-.2)--(1,-.2),Arrows); draw((-1,-.6)--(1,-.6),Arrows);  draw((-1+d,0)--(1+d,0),Arrows); draw((0+d,1)--(0+d,-1),Arrows); draw(dir(45)+(d,0)--dir(45+180)+(d,0),Arrows); draw(dir(135)+(d,0)--dir(135+180)+(d,0),Arrows); dot((0+d,0));  draw((-1+2*d,sqrt(3)/3)--(1+2*d,sqrt(3)/3),Arrows); draw((-1/4-1/2+2*d, sqrt(3)/12-sqrt(3)/2)--(-1/4+1/2+2*d,sqrt(3)/12+sqrt(3)/2),Arrows); draw((1/4+1/2+2*d, sqrt(3)/12-sqrt(3)/2)--(1/4-1/2+2*d,sqrt(3)/12+sqrt(3)/2),Arrows); draw((-1+2*d,-sqrt(3)/6)--(1+2*d,-sqrt(3)/6),Arrows); dot((0+2*d,sqrt(3)/3)); dot((-1/2+2*d,-sqrt(3)/6)); dot((1/2+2*d,-sqrt(3)/6));  draw((-1/3,1-d)--(-1/3,-1-d),Arrows); draw((1/3,1-d)--(1/3,-1-d),Arrows); draw((-1,-1/3-d)--(1,-1/3-d),Arrows); draw((-1,1/3-d)--(1,1/3-d),Arrows); dot((1/3,1/3-d)); dot((-1/3,1/3-d)); dot((1/3,-1/3-d)); dot((-1/3,-1/3-d));  draw((-1+d,sqrt(3)/12-d)--(1+d,sqrt(3)/12-d),Arrows); draw((-1/4-1/2+d, sqrt(3)/12-sqrt(3)/2-d)--(-1/4+1/2+d,sqrt(3)/12+sqrt(3)/2-d),Arrows); draw((1/4+1/2+d, sqrt(3)/12-sqrt(3)/2-d)--(1/4-1/2+d,sqrt(3)/12+sqrt(3)/2-d),Arrows); draw((-1+d,-sqrt(3)/6-d)--(1+d,-sqrt(3)/6-d),Arrows); dot((0+d,sqrt(3)/3-d)); dot((-1/2+d,-sqrt(3)/6-d)); dot((1/2+d,-sqrt(3)/6-d)); dot((-1/4+d,sqrt(3)/12-d)); dot((1/4+d,sqrt(3)/12-d));  draw((-1/4-1/2+2*d, sqrt(3)/12-sqrt(3)/2-d)--(-1/4+1/2+2*d,sqrt(3)/12+sqrt(3)/2-d),Arrows); draw((1/4+1/2+2*d, sqrt(3)/12-sqrt(3)/2-d)--(1/4-1/2+2*d,sqrt(3)/12+sqrt(3)/2-d),Arrows); draw(dir(30)+(2*d,-d)--dir(30+180)+(2*d,-d),Arrows); draw(dir(150)+(2*d,-d)--dir(-30)+(2*d,-d),Arrows); dot((0+2*d,0-d)); dot((0+2*d,sqrt(3)/3-d)); dot((-1/2+2*d,-sqrt(3)/6-d)); dot((1/2+2*d,-sqrt(3)/6-d)); dot((-1/4+2*d,sqrt(3)/12-d)); dot((1/4+2*d,sqrt(3)/12-d)); [/asy]

It is clear that the maximum number of possible intersections is ${4 \choose 2} = 6$, since each pair of lines can intersect at most once. We now prove that it is impossible to obtain two intersections.

We proceed by contradiction. Assume a configuration of four lines exists such that there exist only two intersection points. Let these intersection points be $A$ and $B$. Consider two cases:

Case 1: No line passes through both $A$ and $B$

Then, since an intersection is obtained by an intersection between at least two lines, two lines pass through each of $A$ and $B$. Then, since there can be no additional intersections, no line that passes through $A$ can intersect a line that passes through $B$, and so each line that passes through $A$ must be parallel to every line that passes through $B$. Then the two lines passing through $B$ are parallel to each other by transitivity of parallelism, so they coincide, contradiction.

Case 2: There is a line passing through $A$ and $B$

Then there must be a line $l_a$ passing through $A$, and a line $l_b$ passing through $B$. These lines must be parallel. The fourth line $l$ must pass through either $A$ or $B$. Without loss of generality, suppose $l$ passes through $A$. Then since $l$ and $l_a$ cannot coincide, they cannot be parallel. Then $l$ and $l_b$ cannot be parallel either, so they intersect, contradiction.

All possibilities have been exhausted, and thus we can conclude that two intersections is impossible. Our answer is given by the sum $0+1+3+4+5+6=\boxed{19}$, or $\boxed{\text{D}}$.

(Thomas Lam)

Solution 2

We do casework to find values that work:

Case 1: Four parallel lines, giving $0$ intersections

Case 2: Three parallel lines and one line intersecting the three lines, giving $3$ intersections

Case 3: Two parallel lines with another two parallel lines, giving $4$ intersections

Case 4: Two parallel lines with two other non-parallel lines, giving $5$ intersections

Case 5: Four non-parallel lines all intersecting each other at different points, giving $6$ intersections

Case 6: Four non-parallel lines all intersecting at one point, giving $1$ intersection

You can find out that you cannot have $2$ intersections.

$\text{sum}= 1+3+4+5+6=\boxed{19\implies (D)}$

~David C

(Note: This is the same as the above solution!)

See Also

2019 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2019 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png