Difference between revisions of "1999 AMC 8 Problems/Problem 12"

(Problem)
(Problem)
Line 2: Line 2:
 
The ratio of the number of games won to the number of games lost (no ties) by the Middle School Middies is <math>11/4</math>. To the nearest whole percent, what percent of its games did the team lose?
 
The ratio of the number of games won to the number of games lost (no ties) by the Middle School Middies is <math>11/4</math>. To the nearest whole percent, what percent of its games did the team lose?
  
<math>\text{(A)}\ 24\% \qquad \text{(B)}\ 27\% \qquad \text{(C)}\ 36\% \qquad \text{(D)}\ 45\% \qquad \text{(E)}\ 73\%</math> hi hi
+
<math>\text{(A)}\ 24\% \qquad \text{(B)}\ 27\% \qquad \text{(C)}\ 36\% \qquad \text{(D)}\ 45\% \qquad \text{(E)}\ 73\%</math>
  
 
==Solution==
 
==Solution==

Revision as of 18:21, 11 September 2020

Problem

The ratio of the number of games won to the number of games lost (no ties) by the Middle School Middies is $11/4$. To the nearest whole percent, what percent of its games did the team lose?

$\text{(A)}\ 24\% \qquad \text{(B)}\ 27\% \qquad \text{(C)}\ 36\% \qquad \text{(D)}\ 45\% \qquad \text{(E)}\ 73\%$

Solution

The ratio means that for every $11$ games won, $4$ are lost, so the team has won $11x$ games, lost $4x$ games, and played $15x$ games for some positive integer $x$. The percentage of games lost is just $\dfrac{4x}{15x}\times100=\dfrac{4}{15}\times 100=26.\overline{6}\%\approx\boxed{\text{(B)}\ 27\%}$

See also

1999 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png