Difference between revisions of "2017 AMC 8 Problems/Problem 18"
m (→Video Solution) |
Larryflora (talk | contribs) |
||
Line 6: | Line 6: | ||
<math>\textbf{(A) }12 \qquad \textbf{(B) }24 \qquad \textbf{(C) }26 \qquad \textbf{(D) }30 \qquad \textbf{(E) }36</math> | <math>\textbf{(A) }12 \qquad \textbf{(B) }24 \qquad \textbf{(C) }26 \qquad \textbf{(D) }30 \qquad \textbf{(E) }36</math> | ||
− | ==Solution== | + | ==Solution 1== |
We first connect point <math>B</math> with point <math>D</math>. | We first connect point <math>B</math> with point <math>D</math>. | ||
Line 12: | Line 12: | ||
We can see that <math>\triangle BCD</math> is a 3-4-5 right triangle. We can also see that <math>\triangle BDA</math> is a right triangle, by the 5-12-13 Pythagorean triple. With these lengths, we can solve the problem. The area of <math>\triangle BDA</math> is <math>\frac{5\cdot 12}{2}</math>, and the area of the smaller 3-4-5 triangle is <math>\frac{3\cdot 4}{2}</math>. Thus, the area of quadrialteral <math>ABCD</math> is <math>30-6 = \boxed{\textbf{(B)}\ 24}.</math> | We can see that <math>\triangle BCD</math> is a 3-4-5 right triangle. We can also see that <math>\triangle BDA</math> is a right triangle, by the 5-12-13 Pythagorean triple. With these lengths, we can solve the problem. The area of <math>\triangle BDA</math> is <math>\frac{5\cdot 12}{2}</math>, and the area of the smaller 3-4-5 triangle is <math>\frac{3\cdot 4}{2}</math>. Thus, the area of quadrialteral <math>ABCD</math> is <math>30-6 = \boxed{\textbf{(B)}\ 24}.</math> | ||
+ | |||
+ | ==Solution 2== | ||
+ | <math>\triangle BCD</math> is a 3-4-5 right triangle. Then we can use Heron's formula to resolve the problem. The area of a triangle whose sides have lengths 5, 12, and 13 is \sqrt {s(s-5)(s-12)(s-13)}. S is the semi-perimeter of the triangle, s={\frac {5+12+13}{2}}= 15 <math>.Then the area is \sqrt {15(15-5)(15-12)(15-13)}= 30</math>. <math>ABCD</math> is <math>30-6 = \boxed{\textbf{(B)}\ 24}.</math> | ||
==Video Solution== | ==Video Solution== |
Revision as of 13:26, 17 June 2021
Problem
In the non-convex quadrilateral shown below, is a right angle, , , , and . What is the area of quadrilateral ?
Solution 1
We first connect point with point .
We can see that is a 3-4-5 right triangle. We can also see that is a right triangle, by the 5-12-13 Pythagorean triple. With these lengths, we can solve the problem. The area of is , and the area of the smaller 3-4-5 triangle is . Thus, the area of quadrialteral is
Solution 2
is a 3-4-5 right triangle. Then we can use Heron's formula to resolve the problem. The area of a triangle whose sides have lengths 5, 12, and 13 is \sqrt {s(s-5)(s-12)(s-13)}. S is the semi-perimeter of the triangle, s={\frac {5+12+13}{2}}= 15 . is
Video Solution
https://youtu.be/tJm9KqYG4fU?t=2812
See Also
2017 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 17 |
Followed by Problem 19 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.