Difference between revisions of "2009 AMC 12B Problems/Problem 19"
Kangchangood (talk | contribs) (→Solution 2) |
|||
Line 53: | Line 53: | ||
Now we can use the formula <math>(x^2 - y^2) = (x-y)(x+y)</math> to obtain the same factorization as in the previous solution, without all the work. | Now we can use the formula <math>(x^2 - y^2) = (x-y)(x+y)</math> to obtain the same factorization as in the previous solution, without all the work. | ||
+ | |||
+ | === Solution 4 === | ||
+ | |||
+ | After arriving at the factorization <math>f(x) = (x^2 - 20x + 20)(x^2 + 20x + 20)</math>, a more mathematical approach would be to realize that the second factor is always positive when x is a positive integer. Therefore, in order for <math>f(x)</math> to be prime, the first factor has to be <math>1</math>. | ||
+ | |||
+ | We can set it equal to 1 and solve for <math>x</math>: | ||
+ | <math> | ||
+ | x^2-20x+20=1 | ||
+ | x^2-20x+19=0 | ||
+ | (x-1)(x-19)=0 | ||
+ | x=1, x=19 | ||
+ | </math> | ||
+ | |||
+ | Substituting these values into the second factor and adding would give the answer. | ||
== See Also == | == See Also == | ||
{{AMC12 box|year=2009|ab=B|num-b=18|num-a=20}} | {{AMC12 box|year=2009|ab=B|num-b=18|num-a=20}} |
Revision as of 21:48, 7 February 2011
Contents
Problem
For each positive integer , let . What is the sum of all values of that are prime numbers?
Solution
Solution 1
To find the answer it was enough to play around with . One can easily find that is a prime, then becomes negative for between and , and then is again a prime number. And as is already the largest option, the answer must be .
Solution 2
We will now show a complete solution, with a proof that no other values are prime.
Consider the function , then obviously .
The roots of are:
We can then write , and thus .
We would now like to factor the right hand side further, using the formula . To do this, we need to express both constants as squares of some other constants. Luckily, we have a pretty good idea how they look like.
We are looking for rational and such that . Expanding the left hand side and comparing coefficients, we get and . We can easily guess (or compute) the solution , .
Hence , and we can easily verify that also .
We now know the complete factorization of :
As the final step, we can now combine the factors in a different way, in order to get rid of the square roots.
We have , and .
Hence we obtain the factorization .
For both terms are positive and larger than one, hence is not prime. For the second factor is positive and the first one is negative, hence is not a prime. The remaining cases are and . In both cases, is indeed a prime, and their sum is .
Solution 3
Instead of doing the hard work, we can try to guess the factorization. One good approach:
We can make the observation that looks similar to with the exception of the term. In fact, we have . But then we notice that it differs from the desired expression by a square: .
Now we can use the formula to obtain the same factorization as in the previous solution, without all the work.
Solution 4
After arriving at the factorization , a more mathematical approach would be to realize that the second factor is always positive when x is a positive integer. Therefore, in order for to be prime, the first factor has to be .
We can set it equal to 1 and solve for :
Substituting these values into the second factor and adding would give the answer.
See Also
2009 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |