Difference between revisions of "2008 AMC 8 Problems/Problem 23"

(Created page with "==Problem 23== In square <math>ABCE</math>, <math>AF=2FE</math> and <math>CD=2DE</math>. What is the ratio of the area of <math>\triangle BFD</math> to the area of square <math>A...")
 
Line 1: Line 1:
==Problem 23==
+
==Problem==
 
In square <math>ABCE</math>, <math>AF=2FE</math> and <math>CD=2DE</math>. What is the ratio of the area of <math>\triangle BFD</math> to the area of square <math>ABCE</math>?
 
In square <math>ABCE</math>, <math>AF=2FE</math> and <math>CD=2DE</math>. What is the ratio of the area of <math>\triangle BFD</math> to the area of square <math>ABCE</math>?
 
<asy>
 
<asy>

Revision as of 12:06, 9 December 2012

Problem

In square $ABCE$, $AF=2FE$ and $CD=2DE$. What is the ratio of the area of $\triangle BFD$ to the area of square $ABCE$? [asy] size((100)); draw((0,0)--(9,0)--(9,9)--(0,9)--cycle); draw((3,0)--(9,9)--(0,3)--cycle); dot((3,0)); dot((0,3)); dot((9,9)); dot((0,0)); dot((9,0)); dot((0,9)); label("$A$", (0,9), NW); label("$B$", (9,9), NE); label("$C$", (9,0), SE); label("$D$", (3,0), S); label("$E$", (0,0), SW); label("$F$", (0,3), W); [/asy] $\textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{2}{9}\qquad\textbf{(C)}\ \frac{5}{18}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{7}{20}$

See Also

2008 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions