Difference between revisions of "2008 AMC 8 Problems/Problem 23"
Line 19: | Line 19: | ||
</asy> | </asy> | ||
<math> \textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{2}{9}\qquad\textbf{(C)}\ \frac{5}{18}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{7}{20} </math> | <math> \textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{2}{9}\qquad\textbf{(C)}\ \frac{5}{18}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{7}{20} </math> | ||
+ | |||
+ | ==Solution== | ||
+ | The area of <math>\triangle BFD</math> is the area of square <math>ABCE</math> subtracted by the the area of the three triangles around it. Arbitrarily assign the side length of the square to be <math>6</math>. | ||
+ | |||
+ | <asy> | ||
+ | size((100)); | ||
+ | pair A=(0,9), B=(9,9), C=(9,0), D=(3,0), E=(0,0), F=(0,3); | ||
+ | pair[] ps={A,B,C,D,E,F}; | ||
+ | dot(ps); | ||
+ | draw(A--B--C--E--cycle); | ||
+ | draw(B--F--D--cycle); | ||
+ | label("$A$",A, NW); | ||
+ | label("$B$",B, NE); | ||
+ | label("$C$",C, SE); | ||
+ | label("$D$",D, S); | ||
+ | label("$E$",E, SW); | ||
+ | label("$F$",F, W); | ||
+ | label("$6$",A--B,N); | ||
+ | label("$6$",(10,4.5),E); | ||
+ | label("$4$",D--C,S); | ||
+ | label("$2$",E--D,S); | ||
+ | label("$2$",E--F,W); | ||
+ | label("$4$",F--A,W); | ||
+ | </asy> | ||
+ | |||
+ | The ratio of the area of <math>\triangle BFD</math> to the area of <math>ABCE</math> is | ||
+ | |||
+ | <cmath>\frac{36-12-12-2}{36} = \frac{10}{36} = \boxed{\textbf{(C)}\ \frac{5}{18}}</cmath> | ||
==See Also== | ==See Also== | ||
{{AMC8 box|year=2008|num-b=22|num-a=24}} | {{AMC8 box|year=2008|num-b=22|num-a=24}} |
Revision as of 03:07, 25 December 2012
Problem
In square , and . What is the ratio of the area of to the area of square ?
Solution
The area of is the area of square subtracted by the the area of the three triangles around it. Arbitrarily assign the side length of the square to be .
The ratio of the area of to the area of is
See Also
2008 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |