Difference between revisions of "2014 AMC 10A Problems/Problem 13"
(→Solution 2) |
|||
Line 53: | Line 53: | ||
==Solution 2== | ==Solution 2== | ||
− | + | As seen in the previous solution, segment <math>GH</math> is <math>\sqrt{3}</math>. Think of the picture as one large equilateral triangle, <math>\triangle{JKL} with the sides of </math>2\sqrt{3}+1<math>, by extending </math>EF<math>, </math>GH<math>, and </math>DI<math> to points </math>J<math>, </math>K<math>, and </math>L<math>, respectively. This makes the area of </math>\triangle{JKL}<math> </math>\dfrac{\sqrt{3}}{4}(2\sqrt{3}+1)^2=\dfrac{12+13\sqrt{3}}{4}$. | |
− | + | <asy> | |
+ | import graph; | ||
+ | size(10cm); | ||
+ | pen dps = linewidth(0.7) + fontsize(8); defaultpen(dps); | ||
+ | pair B = (0,0); | ||
+ | pair C = (1,0); | ||
+ | pair A = rotate(60,B)*C; | ||
− | + | pair E = rotate(270,A)*B; | |
+ | pair D = rotate(270,E)*A; | ||
− | Now, you subtract the | + | pair F = rotate(90,A)*C; |
+ | pair G = rotate(90,F)*A; | ||
+ | |||
+ | pair I = rotate(270,B)*C; | ||
+ | pair H = rotate(270,I)*B; | ||
+ | |||
+ | pair J = rotate(60,I)*D; | ||
+ | pair K = rotate(60,E)*F; | ||
+ | pair L = rotate(60,G)*H; | ||
+ | |||
+ | draw(A--B--C--cycle); | ||
+ | draw(A--E--D--B); | ||
+ | draw(A--F--G--C); | ||
+ | draw(B--I--H--C); | ||
+ | |||
+ | draw(E--F); | ||
+ | draw(D--I); | ||
+ | draw(I--H); | ||
+ | draw(H--G); | ||
+ | |||
+ | draw(I--J--D); | ||
+ | draw(E--K--F); | ||
+ | draw(G--L--H); | ||
+ | |||
+ | label("$A$",A,N); | ||
+ | label("$B$",B,SW); | ||
+ | label("$C$",C,SE); | ||
+ | label("$D$",D,W); | ||
+ | label("$E$",E,W); | ||
+ | label("$F$",F,E); | ||
+ | label("$G$",G,E); | ||
+ | label("$H$",H,SE); | ||
+ | label("$I$",I,SW); | ||
+ | label("$J$",J,SW); | ||
+ | label("$K$",K,N); | ||
+ | label("$L$",L,SE); | ||
+ | </asy> | ||
+ | |||
+ | Triangles <math>\triangle{DIJ}</math>, <math>\triangle{EFK}</math>, and <math>\triangle{GHL}</math> have sides of <math>\sqrt{3}</math>, so their total area is <math>3(\dfrac{\sqrt{3}}{4}(\sqrt{3})^2)=\dfrac{9\sqrt{3}}{4}</math>. | ||
+ | |||
+ | Now, you subtract their total area from the area of <math>\triangle{JKL}</math>: | ||
<math>\dfrac{12+13\sqrt{3}}{4}-\dfrac{9\sqrt{3}}{4}=\dfrac{12+13\sqrt{3}-9\sqrt{3}}{4}=\dfrac{12+4\sqrt{3}}{4}=3+\sqrt{3}\implies\boxed{\textbf{(C)}\ 3+\sqrt3}</math> | <math>\dfrac{12+13\sqrt{3}}{4}-\dfrac{9\sqrt{3}}{4}=\dfrac{12+13\sqrt{3}-9\sqrt{3}}{4}=\dfrac{12+4\sqrt{3}}{4}=3+\sqrt{3}\implies\boxed{\textbf{(C)}\ 3+\sqrt3}</math> |
Revision as of 11:24, 13 February 2014
Contents
Problem
Equilateral has side length , and squares , , lie outside the triangle. What is the area of hexagon ?
Solution 1
The area of the equilateral triangle is . The area of the three squares is .
Since , .
Dropping an altitude from to allows to create a triangle since is isosceles. This means that the height of is and half the length of is . Therefore, the area of each isosceles triangle is . Multiplying by yields for all three isosceles triangles.
Therefore, the total area is .
Solution 2
As seen in the previous solution, segment is . Think of the picture as one large equilateral triangle, 2\sqrt{3}+1EFGHDIJKL\triangle{JKL}$$ (Error compiling LaTeX. Unknown error_msg)\dfrac{\sqrt{3}}{4}(2\sqrt{3}+1)^2=\dfrac{12+13\sqrt{3}}{4}$.
Triangles , , and have sides of , so their total area is .
Now, you subtract their total area from the area of :
(Solution by Pyson)
See Also
2014 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.