Difference between revisions of "1988 AHSME Problems/Problem 19"

(Created page with "==Problem== Simplify <math>\frac{bx(a^2x^2 + 2a^2y^2 + b^2y^2) + ay(a^2x^2 + 2b^2x^2 + b^2y^2)}{bx + ay}</math> <math>\textbf{(A)}\ a^2x^2 + b^2y^2\qquad \textbf{(B)}\ (ax + b...")
 
(Added a solution with explanation)
Line 13: Line 13:
  
 
==Solution==
 
==Solution==
 
+
The fastest way is to multiply each answer choice by <math>bx + ay</math> and then compare to the numerator. This gives <math>\boxed{\text{B}}</math>.
  
  

Revision as of 13:05, 27 February 2018

Problem

Simplify

$\frac{bx(a^2x^2 + 2a^2y^2 + b^2y^2) + ay(a^2x^2 + 2b^2x^2 + b^2y^2)}{bx + ay}$

$\textbf{(A)}\ a^2x^2 + b^2y^2\qquad \textbf{(B)}\ (ax + by)^2\qquad \textbf{(C)}\ (ax + by)(bx + ay)\qquad\\ \textbf{(D)}\ 2(a^2x^2+b^2y^2)\qquad \textbf{(E)}\ (bx+ay)^2$


Solution

The fastest way is to multiply each answer choice by $bx + ay$ and then compare to the numerator. This gives $\boxed{\text{B}}$.


See also

1988 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png