GET READY FOR THE AMC 10 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 10 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2015 AMC 10A Problems"

(Problem 16)
(Problem 14)
Line 94: Line 94:
  
 
==Problem 14==
 
==Problem 14==
Consider the set of all fractions <math>\tfrac{x}{y},</math> where <math>x</math> and <math>y</math> are relatively prime positive integers. How many of these fractions have the property that if both numerator and denominator are increased by <math>1</math>, the value of the fraction is increased by <math>10\%</math>?
 
 
<math> \textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }\text{infinitely many} </math>
 
  
 
==Problem 15==
 
==Problem 15==

Revision as of 17:03, 4 February 2015

Problem 1

What is the value of $(2^0-1+5^2-0)^{-1}\times5?$

$\textbf{(A)}\ -125\qquad\textbf{(B)}\ -120\qquad\textbf{(C)}\ \frac{1}{5}\qquad\textbf{(D)}}\ \frac{5}{24}\qquad\textbf{(E)}\ 25$ (Error compiling LaTeX. Unknown error_msg)

Solution

Problem 2

A box contains a collection of triangular and square tiles. There are $25$ tiles in the box, containing $84$ edges total. How many square tiles are there in the box?

$\textbf{(A)}\ 3\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 7\qquad\textbf{(D)}}\ 9\qquad\textbf{(E)}\ 11$ (Error compiling LaTeX. Unknown error_msg)

Solution

Problem 3

Ann made a 3-step staircase using 18 toothpicks. How many toothpicks does she need to add to complete a 5-step staircase?

$\textbf{(A)}\ 9\qquad\textbf{(B)}\ 18\qquad\textbf{(C)}\ 20\qquad\textbf{(D)}}\ 22\qquad\textbf{(E)}\ 24$ (Error compiling LaTeX. Unknown error_msg)

Solution

Problem 4

Pablo, Sofia, and Mia got some candy eggs at a party. Pablo had three times as many eggs as Sofia, and Sofia had twice as many eggs as Mia. Pablo decides to give some of his eggs to Sofia and Mia so that all three will have the same number of eggs. What fraction of his eggs should Pablo give to Sofia?

$\textbf{(A)}\ \frac{1}{12}\qquad\textbf{(B)}\ \frac{1}{6}\qquad\textbf{(C)}\ \frac{1}{4}\qquad\textbf{(D)}}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{1}{2}$ (Error compiling LaTeX. Unknown error_msg)

Solution

Problem 5

Mr. Patrick teaches math to $15$ students. He was grading tests and found that when he graded everyone's test except Payton's, the average grade for the class was $80$. After he graded Payton's test, the test average became $81$. What was Payton's score on the test?

$\textbf{(A)}\ 81\qquad\textbf{(B)}\ 85\qquad\textbf{(C)}\ 91\qquad\textbf{(D)}}\ 94\qquad\textbf{(E)}\ 95$ (Error compiling LaTeX. Unknown error_msg)

Solution

Problem 6

The sum of two positive numbers is $5$ times their difference. What is the ratio of the larger number to the smaller number?

$\textbf{(A)}\ \frac{5}{4}\qquad\textbf{(B)}\ \frac{3}{2}\qquad\textbf{(C)}\ \frac{9}{5}\qquad\textbf{(D)}}\ 2 \qquad\textbf{(E)}\ \frac{5}{2}$ (Error compiling LaTeX. Unknown error_msg)

Solution

Problem 7

How many terms are there in the arithmetic sequence $13$, $16$, $19$, . . ., $70$, $73$?

$\textbf{(A)}\ 20\qquad\textbf{(B)}\ 21\qquad\textbf{(C)}\ 24\qquad\textbf{(D)}}\ 60\qquad\textbf{(E)}\ 61$ (Error compiling LaTeX. Unknown error_msg)

Solution

Problem 8

Two years ago Pete was three times as old as his cousin Claire. Two years before that, Pete was four times as old as Claire. In how many years will the ratio of their ages be $2$ : $1$?

$\textbf{(A)}\ 2\qquad\textbf{(B)}\ 4\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}}\ 6\qquad\textbf{(E)}\ 8$ (Error compiling LaTeX. Unknown error_msg)

Solution

Problem 9

Two right circular cylinders have the same volume. The radius of the second cylinder is $10\%$ more than the radius of the first. What is the relationship between the heights of the two cylinders?

$\textbf{(A)}\ \text{The second height is } 10\% \text{ less than the first.} \\ \textbf{(B)}\ \text{The first height is } 10\% \text{ more than the second.}\\ \textbf{(C)}\ \text{The second height is } 21\% \text{ less than the first.} \\ \textbf{(D)}}\ \text{The first height is } 21\% \text{ more than the second.}\\ \textbf{(E)}\ \text{The second height is } 80\% \text{ of the first.}$ (Error compiling LaTeX. Unknown error_msg)

Solution

Problem 10

How many rearrangements of $abcd$ are there in which no two adjacent letters are also adjacent letters in the alphabet? For example, no such rearrangements could include either $ab$ or $ba$.

$\textbf{(A)}\ 0\qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}}\ 3\qquad\textbf{(E)}\ 4$ (Error compiling LaTeX. Unknown error_msg)

Solution

Problem 11

The ratio of the length to the width of a rectangle is $4$ : $3$. If the rectangle has diagonal of length $d$, then the area may be expressed as $kd^2$ for some constant $k$. What is $k$?

$\textbf{(A)}\ \frac{2}{7}\qquad\textbf{(B)}\ \frac{3}{7}\qquad\textbf{(C)}\ \frac{12}{25}\qquad\textbf{(D)}}\ \frac{16}{25}\qquad\textbf{(E)}\ \frac{3}{4}$ (Error compiling LaTeX. Unknown error_msg)

Solution

Problem 12

Points $(\sqrt{\pi}, a)$ and $(\sqrt{\pi}, b)$ are distinct points on the graph of $y^2+x^4=2x^2y+1$. What is $|a-b|$?

$\textbf{(A) }1\qquad\textbf{(B) }\dfrac{\pi}{2}\qquad\textbf{(C) }2\qquad\textbf{(D) }\sqrt{1+\pi}\qquad\textbf{(E) }1+\sqrt{\pi}$

Problem 13

Claudia has 12 coins, each of which is a 5-cent coin or a 10-cent coin. There are exactly 17 different values that can be obtained as combinations of one or more of her coins. How many 10-cent coins does Claudia have?

$\textbf{(A) }3\qquad\textbf{(B) }4\qquad\textbf{(C) }5\qquad\textbf{(D) }6\qquad\textbf{(E) }7$

Problem 14

Problem 15

Problem 16

If $y+4 = (x-2)^2, x+4 = (y-2)^2$, and $x \neq y$, what is the value of $x^2+y^2$?

$\textbf{(A) }10\qquad\textbf{(B) }15\qquad\textbf{(C) }20\qquad\textbf{(D) }25\qquad\textbf{(E) }\text{30}$

Problem 17

Problem 18

Problem 19

Problem 20

A rectangle has area $A$ $\text{cm}^2$ and perimeter $P$ $\text{cm}$, where $A$ and $P$ are positive integers. Which of the following numbers cannot equal $A+P$?

$\textbf{(A) }100\qquad\textbf{(B) }102\qquad\textbf{(C) }104\qquad\textbf{(D) }106\qquad\textbf{(E) }108$

Solution

Problem 21

Problem 22

Eight people are sitting around a circular table, each holding a fair coin. All eight people flip their coins and those who flip heads stand while those who flip tails remain seated. What is the probability that no two adjacent people will stand?

$\textbf{(A)}\dfrac{47}{256}\qquad\textbf{(B)}\dfrac{3}{16}\qquad\textbf{(C) }\dfrac{49}{256}\qquad\textbf{(D) }\dfrac{25}{128}\qquad\textbf{(E) }\dfrac{51}{256}$

Solution

Problem 23

The zeros of the function $f(x)=x^2-ax+2a$ are integers. What is the sum of the possible values of $a$?

$\textbf{(A) }7\qquad\textbf{(B) }8\qquad\textbf{(C) }16\qquad\textbf{(D) }17\qquad\textbf{(E) }18$

Solution

Problem 24

For some positive integers $p$, there is a quadrilateral $ABCD$ with positive integer side lengths, perimeter $p$, right angles at $B$ and $C$, $AB=2$, and $CD=AD$. How many different values of $p<2015$ are possible?

$\textbf{(A) }30\qquad\textbf{(B) }31\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63$

Problem 25

Let $S$ be a square of side length $1$. Two points are chosen independently at random on the sides of $S$. The probability that the straight-line distance between the points is at least $\tfrac12$ is $\tfrac{a-b\pi}c$, where $a$, $b$, and $c$ are positive integers with $\gcd(a,b,c)=1$. What is $a+b+c$?

$\textbf{(A) }59\qquad\textbf{(B) }60\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63$

See also

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png