Difference between revisions of "Nine point circle"
m (→Proof of the Nine-Point circle) |
m (→Proof of the Existence) |
||
Line 10: | Line 10: | ||
The center of the nine point circle is the [[nine-point center]] and is usually denoted <math>N</math>. | The center of the nine point circle is the [[nine-point center]] and is usually denoted <math>N</math>. | ||
− | ==Proof of | + | ==Proof of Existence== |
Since <math>O_c</math> is the midpoint of <math>AB</math> and <math>E_b</math> is the midpoint of <math>BH</math>, <math>O_cE_b</math> is parallel to <math>AH</math>. Using similar logic, we see that <math>O_bE_c</math> is also parallel to <math>AH</math>. Since <math>E_b</math> is the midpoint of <math>HB</math> and <math>E_c</math> is the midpoint of <math>BC</math>, <math>E_bE_c</math> is parallel to <math>BC</math>, which is perpendicular to <math>AH</math>. Similar logic gives us that <math>O_bO_c</math> is perpendicular to <math>AH</math> as well. Therefore <math>O_bO_cE_bE_c</math> is a rectangle, which is a cyclic figure. The diagonals <math>O_bE_b</math> and <math>O_cE_c</math> are diagonals of the circumcircle. Similar logic to the above gives us that <math>O_aO_cE_aE_c</math> is a rectangle with a common diagonal to <math>O_bO_cE_bE_c</math>. Therefore the circumcircles of the two rectangles are identical. We can also gain that rectangle <math>O_aO_bE_aE_b</math> is also on the circle. | Since <math>O_c</math> is the midpoint of <math>AB</math> and <math>E_b</math> is the midpoint of <math>BH</math>, <math>O_cE_b</math> is parallel to <math>AH</math>. Using similar logic, we see that <math>O_bE_c</math> is also parallel to <math>AH</math>. Since <math>E_b</math> is the midpoint of <math>HB</math> and <math>E_c</math> is the midpoint of <math>BC</math>, <math>E_bE_c</math> is parallel to <math>BC</math>, which is perpendicular to <math>AH</math>. Similar logic gives us that <math>O_bO_c</math> is perpendicular to <math>AH</math> as well. Therefore <math>O_bO_cE_bE_c</math> is a rectangle, which is a cyclic figure. The diagonals <math>O_bE_b</math> and <math>O_cE_c</math> are diagonals of the circumcircle. Similar logic to the above gives us that <math>O_aO_cE_aE_c</math> is a rectangle with a common diagonal to <math>O_bO_cE_bE_c</math>. Therefore the circumcircles of the two rectangles are identical. We can also gain that rectangle <math>O_aO_bE_aE_b</math> is also on the circle. | ||
Revision as of 17:50, 3 August 2017
The nine point circle (also known as Euler's circle or Feuerbach's circle) of a given triangle is a circle which passes through 9 "significant" points:
- The three feet of the altitudes of the triangle.
- The three midpoints of the edges of the triangle.
- The three midpoints of the segments joining the vertices of the triangle to its orthocenter. (These points are sometimes known as the Euler points of the triangle.)
That such a circle exists is a non-trivial theorem of Euclidean geometry.
The center of the nine point circle is the nine-point center and is usually denoted .
Proof of Existence
Since is the midpoint of and is the midpoint of , is parallel to . Using similar logic, we see that is also parallel to . Since is the midpoint of and is the midpoint of , is parallel to , which is perpendicular to . Similar logic gives us that is perpendicular to as well. Therefore is a rectangle, which is a cyclic figure. The diagonals and are diagonals of the circumcircle. Similar logic to the above gives us that is a rectangle with a common diagonal to . Therefore the circumcircles of the two rectangles are identical. We can also gain that rectangle is also on the circle.
We now have a circle with the points , , , , , and on it, with diameters , , and . We now note that . Therefore , , ad are also on the circle. We now have a circle with the midpoints of the sides on it, the three midpoints of the segments joining the vertices of the triangle to its orthocenter on it, and the three feet of the altitudes of the triangle on it. Therefore the nine points are on the circle, and the nine-point circle exists. We know that the reflection of the orthocenter about the Triangle's sides and about the mid points of the triangle's sides lie on the circumcircle. Thus consider the homothety centred at with ratio .It maps the circumcircle to the nine point circle. Hence proved. This article is a stub. Help us out by expanding it.