Difference between revisions of "1971 AHSME Problems/Problem 29"
(Created page with "== Problem 29 == Given the progression <math>10^{\dfrac{1}{11}}, 10^{\dfrac{2}{11}}, 10^{\dfrac{3}{11}}, 10^{\dfrac{4}{11}},\dots , 10^{\dfrac{n}{11}}</math>. The least posi...") |
(→Problem 29) |
||
Line 9: | Line 9: | ||
\textbf{(D) }10\qquad | \textbf{(D) }10\qquad | ||
\textbf{(E) }11 </math> | \textbf{(E) }11 </math> | ||
− | |||
− | |||
==Solution== | ==Solution== |
Revision as of 17:02, 22 August 2019
Problem 29
Given the progression . The least positive integer such that the product of the first terms of the progression exceeds is