Difference between revisions of "2017 AMC 10B Problems/Problem 24"
Shurong.ge (talk | contribs) m |
Shurong.ge (talk | contribs) |
||
Line 5: | Line 5: | ||
==Solution 1== | ==Solution 1== | ||
+ | <asy> | ||
+ | size(5cm); | ||
+ | Label f; | ||
+ | f.p=fontsize(6); | ||
+ | xaxis(-8,8,Ticks(f, 2.0)); | ||
+ | yaxis(-8,8,Ticks(f, 2.0)); | ||
+ | real f(real x) | ||
+ | { | ||
+ | return 1/x; | ||
+ | } | ||
+ | draw(graph(f,-8,-0.125)); | ||
+ | draw(graph(f,0.125,8)); | ||
+ | </asy> | ||
+ | |||
Without loss of generality, let the centroid of <math>\triangle ABC</math> be <math>I = (-1,-1)</math>. The centroid of an equilateral triangle is the same as the circumcenter. It follows that the circumcircle must intersect the graph exactly three times. Therefore, <math>A = (1,1)</math>, so <math>AI = BI = CI = 2\sqrt{2}</math>, so since <math>\triangle AIB</math> is isosceles and <math>\angle AIB = 120^{\circ}</math>, then by Law of Cosines, <math>AB = 2\sqrt{6}</math>. Alternatively, we can use the fact that the circumradius of an equilateral triangle is equal to <math>\frac {s}{\sqrt{3}}</math>. Therefore, the area of the triangle is <math>\frac{(2\sqrt{6})^2\sqrt{3}}4 = 6\sqrt{3}</math>, so the square of the area of the triangle is <math>\boxed{\textbf{(C) } 108}</math>. | Without loss of generality, let the centroid of <math>\triangle ABC</math> be <math>I = (-1,-1)</math>. The centroid of an equilateral triangle is the same as the circumcenter. It follows that the circumcircle must intersect the graph exactly three times. Therefore, <math>A = (1,1)</math>, so <math>AI = BI = CI = 2\sqrt{2}</math>, so since <math>\triangle AIB</math> is isosceles and <math>\angle AIB = 120^{\circ}</math>, then by Law of Cosines, <math>AB = 2\sqrt{6}</math>. Alternatively, we can use the fact that the circumradius of an equilateral triangle is equal to <math>\frac {s}{\sqrt{3}}</math>. Therefore, the area of the triangle is <math>\frac{(2\sqrt{6})^2\sqrt{3}}4 = 6\sqrt{3}</math>, so the square of the area of the triangle is <math>\boxed{\textbf{(C) } 108}</math>. | ||
+ | |||
+ | -Asymptote diagram by Shurong.ge | ||
==Solution 2== | ==Solution 2== |
Revision as of 14:47, 13 January 2020
Contents
[hide]Problem 24
The vertices of an equilateral triangle lie on the hyperbola , and a vertex of this hyperbola is the centroid of the triangle. What is the square of the area of the triangle?
Solution 1
Without loss of generality, let the centroid of be . The centroid of an equilateral triangle is the same as the circumcenter. It follows that the circumcircle must intersect the graph exactly three times. Therefore, , so , so since is isosceles and , then by Law of Cosines, . Alternatively, we can use the fact that the circumradius of an equilateral triangle is equal to . Therefore, the area of the triangle is , so the square of the area of the triangle is .
-Asymptote diagram by Shurong.ge
Solution 2
Without loss of generality, let the centroid of be . Then, one of the vertices must be the other curve of the hyperbola. Without loss of generality, let . Then, point must be the reflection of across the line , so let and , where . Because is the centroid, the average of the -coordinates of the vertices of the triangle is . So we know that . Multiplying by and solving gives us . So and . So , and finding the square of the area gives us . ~minor LaTeX edit by dolphin7
Solution 3
Without loss of generality, let the centroid of be and let point be . It is known that the centroid is equidistant from the three vertices of . Because we have the coordinates of both and , we know that the distance from to any vertice of is . Therefore, . It follows that from , where and , using the formula for the area of a triangle with sine . Because and are congruent to , they also have an area of . Therefore, . Squaring that gives us the answer of .
Solution 4 (5-second solution)
Without loss of generality, let the centroid of the triangle be . By symmetry, the other vertex is . The distance between these two points is , so the height of the triangle is , the side length is , and the area is , yielding an answer of . -Stormersyle
See Also
2017 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.