Difference between revisions of "2007 AIME II Problems/Problem 3"

m (fmt a bit)
Line 4: Line 4:
 
<div style="text-align:center;">[[Image:2007 AIME II-3.png]]</div>
 
<div style="text-align:center;">[[Image:2007 AIME II-3.png]]</div>
  
 +
__TOC__
 
== Solution ==
 
== Solution ==
  
 
+
=== Solution 1 ===
== '''Solution 1.''' ==
 
  
 
Extend <math>\overline{AE}, \overline{DF}</math> and <math>\overline{BE}, \overline{CF}</math> to their points of intersection. Since <math>\triangle ABE \cong \triangle CDF</math> and are both <math>5-12-13</math> [[right triangle]]s, we can come to the conclusion that the two new triangles are also congruent to these two (use [[ASA]], as we know all the sides are <math>13</math> and the angles are mostly complementary). Thus, we create a [[square]] with sides <math>5 + 12 = 17</math>.
 
Extend <math>\overline{AE}, \overline{DF}</math> and <math>\overline{BE}, \overline{CF}</math> to their points of intersection. Since <math>\triangle ABE \cong \triangle CDF</math> and are both <math>5-12-13</math> [[right triangle]]s, we can come to the conclusion that the two new triangles are also congruent to these two (use [[ASA]], as we know all the sides are <math>13</math> and the angles are mostly complementary). Thus, we create a [[square]] with sides <math>5 + 12 = 17</math>.
Line 16: Line 16:
  
  
== '''Solution 2.''' ==
+
=== Solution 2 ===
 
 
 
 
 
A slightly more analytic/brute-force approach:
 
A slightly more analytic/brute-force approach:
  
Line 25: Line 23:
 
Drop perpendiculars from <math>E</math> and <math>F</math> to <math>I</math> and <math>J</math>, respectively; construct right triangle <math>EKF</math> with right angle at K and <math>EK || BC</math>. Since <math>2[CDF]=DF*CF=CD*JF</math>, we have <math>JF=5\times12/13 = \frac{60}{13}</math>. Similarly, <math>EI=\frac{60}{13}</math>. Since <math>\triangle DJF \sim \triangle DFC</math>, we have <math>DJ=\frac{5JF}{12}=\frac{25}{13}</math>.
 
Drop perpendiculars from <math>E</math> and <math>F</math> to <math>I</math> and <math>J</math>, respectively; construct right triangle <math>EKF</math> with right angle at K and <math>EK || BC</math>. Since <math>2[CDF]=DF*CF=CD*JF</math>, we have <math>JF=5\times12/13 = \frac{60}{13}</math>. Similarly, <math>EI=\frac{60}{13}</math>. Since <math>\triangle DJF \sim \triangle DFC</math>, we have <math>DJ=\frac{5JF}{12}=\frac{25}{13}</math>.
  
Now, we see that <math>FK=DC-(DJ+IB)=DC-2DJ=13-\frac{50}{13}=\frac{119}{13}</math>. Also, <math>EK=BC+(JF+IE)=BC+2JF=13+\frac{120}{13}=\frac{289}{13}</math>. By the Pythagorean Theorem, we have <math>EF=\sqrt{\left(\frac{289}{13}\right)^2+\left(\frac{119}{13} \right)^2}=\frac{\sqrt{(17^2)(17^2+7^2)}}{13}=\frac{17\sqrt{338}}{13}=\frac{17(13\sqrt{2})}{13}=17\sqrt{2}</math>. Therefore, <math>EF^2=(17\sqrt{2})^2=578</math>.
+
Now, we see that <math>FK=DC-(DJ+IB)=DC-2DJ=13-\frac{50}{13}=\frac{119}{13}</math>. Also, <math>EK=BC+(JF+IE)=BC+2JF=13+\frac{120}{13}=\frac{289}{13}</math>. By the Pythagorean Theorem, we have <math>EF=\sqrt{\left(\frac{289}{13}\right)^2+\left(\frac{119}{13} \right)^2}=\frac{\sqrt{(17^2)(17^2+7^2)}}{13}</math><math>=\frac{17\sqrt{338}}{13}=\frac{17(13\sqrt{2})}{13}=17\sqrt{2}</math>. Therefore, <math>EF^2=(17\sqrt{2})^2=578</math>.
  
 
== See also ==
 
== See also ==

Revision as of 08:41, 4 April 2007

Problem

Square $ABCD$ has side length $13$, and points $E$ and $F$ are exterior to the square such that $BE=DF=5$ and $AE=CF=12$. Find $\displaystyle EF^{2}$.

2007 AIME II-3.png

Solution

Solution 1

Extend $\overline{AE}, \overline{DF}$ and $\overline{BE}, \overline{CF}$ to their points of intersection. Since $\triangle ABE \cong \triangle CDF$ and are both $5-12-13$ right triangles, we can come to the conclusion that the two new triangles are also congruent to these two (use ASA, as we know all the sides are $13$ and the angles are mostly complementary). Thus, we create a square with sides $5 + 12 = 17$.

2007 AIME II-3b.PNG

$\overline{EF}$ is the diagonal of the square, with length $17\sqrt{2}$; the answer is $EF^2 = (17\sqrt{2})^2 = 578$.


Solution 2

A slightly more analytic/brute-force approach:

AIME II prob10 bruteforce.PNG

Drop perpendiculars from $E$ and $F$ to $I$ and $J$, respectively; construct right triangle $EKF$ with right angle at K and $EK || BC$. Since $2[CDF]=DF*CF=CD*JF$, we have $JF=5\times12/13 = \frac{60}{13}$. Similarly, $EI=\frac{60}{13}$. Since $\triangle DJF \sim \triangle DFC$, we have $DJ=\frac{5JF}{12}=\frac{25}{13}$.

Now, we see that $FK=DC-(DJ+IB)=DC-2DJ=13-\frac{50}{13}=\frac{119}{13}$. Also, $EK=BC+(JF+IE)=BC+2JF=13+\frac{120}{13}=\frac{289}{13}$. By the Pythagorean Theorem, we have $EF=\sqrt{\left(\frac{289}{13}\right)^2+\left(\frac{119}{13} \right)^2}=\frac{\sqrt{(17^2)(17^2+7^2)}}{13}$$=\frac{17\sqrt{338}}{13}=\frac{17(13\sqrt{2})}{13}=17\sqrt{2}$. Therefore, $EF^2=(17\sqrt{2})^2=578$.

See also

2007 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions