During AMC testing, the AoPS Wiki is in read-only mode. Your account is not considered logged in on wiki pages and no edits can be made.

Difference between revisions of "British Flag Theorem"

(Seriously, you guys need to learn asymptote.)
Line 1: Line 1:
 
The '''British flag theorem''' says that if a point P is chosen inside [[rectangle]] ABCD then <math>AP^{2}+PC^{2}=BP^{2}+DP^{2}</math>.
 
The '''British flag theorem''' says that if a point P is chosen inside [[rectangle]] ABCD then <math>AP^{2}+PC^{2}=BP^{2}+DP^{2}</math>.
  
  A---w--------B
+
<asy>
  |  |        |
+
size(200);
  z---P--------x
+
pair A,B,C,D,P;
  |  |        |
+
A=(0,0);
  |  |        |
+
B=(200,0);
  D---y--------C     
+
C=(200,150);
    Figure 1
+
D=(0,150);
 +
P=(124,85);
 +
draw(A--B--C--D--cycle);
 +
label("<math>A</math>",A,(-1,0));
 +
dot(A);
 +
label("<math>B</math>",B,(0,-1));
 +
dot(B);
 +
label("<math>C</math>",C,(1,0));
 +
dot(C);
 +
label("<math>D</math>",D,(0,1));
 +
dot(D);
 +
dot(P);
 +
label("<math>P</math>",P,(1,1));
 +
draw((0,85)--(200,85));
 +
draw((124,0)--(124,150));
 +
label("<math>w</math>",(124,0),(0,-1));
 +
label("<math>x</math>",(200,85),(1,0));
 +
label("<math>y</math>",(124,150),(0,1));
 +
label("<math>z</math>",(0,85),(-1,0));
 +
dot((124,0));
 +
dot((200,85));
 +
dot((124,150));
 +
dot((0,85));
 +
</asy>
  
The theorem also applies to points outside the square, although the proof is harder to visualize in this case.
+
The theorem also applies to points outside the rectangle, although the proof is harder to visualize in this case.
  
 
== Proof ==
 
== Proof ==
Line 22: Line 45:
 
Therefore:
 
Therefore:
  
* <math>AP^{2} + PC^{2} = Aw^{2} + Az^{2} + wB^{2} + zD^{2} = wB^{2} + Az^{2} + zD^{2} + Aw^{2} = BP^{2} + PD^{2}</math>
+
*<math>AP^{2} + PC^{2} = Aw^{2} + Az^{2} + wB^{2} + zD^{2} = wB^{2} + Az^{2} + zD^{2} + Aw^{2} =\nolinebreak BP^{2} +\nolinebreak PD^{2}</math>
  
  

Revision as of 16:14, 16 October 2007

The British flag theorem says that if a point P is chosen inside rectangle ABCD then $AP^{2}+PC^{2}=BP^{2}+DP^{2}$.

[asy] size(200); pair A,B,C,D,P; A=(0,0); B=(200,0); C=(200,150); D=(0,150); P=(124,85); draw(A--B--C--D--cycle); label("<math>A</math>",A,(-1,0)); dot(A); label("<math>B</math>",B,(0,-1)); dot(B); label("<math>C</math>",C,(1,0)); dot(C); label("<math>D</math>",D,(0,1)); dot(D); dot(P); label("<math>P</math>",P,(1,1)); draw((0,85)--(200,85)); draw((124,0)--(124,150)); label("<math>w</math>",(124,0),(0,-1)); label("<math>x</math>",(200,85),(1,0)); label("<math>y</math>",(124,150),(0,1)); label("<math>z</math>",(0,85),(-1,0)); dot((124,0)); dot((200,85)); dot((124,150)); dot((0,85)); [/asy]

The theorem also applies to points outside the rectangle, although the proof is harder to visualize in this case.

Proof

In Figure 1, by the Pythagorean theorem, we have:

  • $AP^{2} = Aw^{2} + Az^{2}$
  • $PC^{2} = wB^{2} + zD^{2}$
  • $BP^{2} = wB^{2} + Az^{2}$
  • $PD^{2} = zD^{2} + Aw^{2}$

Therefore:

  • $AP^{2} + PC^{2} = Aw^{2} + Az^{2} + wB^{2} + zD^{2} = wB^{2} + Az^{2} + zD^{2} + Aw^{2} =\nolinebreak BP^{2} +\nolinebreak PD^{2}$

This article is a stub. Help us out by expanding it.