Difference between revisions of "1985 AJHSME Problems/Problem 2"

(Solution 4)
(Solution 1)
Line 7: Line 7:
  
 
==Solution 1==
 
==Solution 1==
To simplify the problem, we can group 90’s together: <math>90 + 91 + ... + 98 + 99 = 90 \cdot 10 + 1 + 2 + 3 + ... + 8 + 9</math>.
+
To simplify the problem, we can group 90’s together: [mathjax]90 + 91 + ... + 98 + 99 = 90 \cdot 10 + 1 + 2 + 3 + ... + 8 + 9[/mathjax].
  
<math>90\cdot10=900</math>, and finding <math>1 + 2 + ... + 8 + 9</math> has a trick to it.
+
[mathjax]90\cdot10=900[/mathjax], and finding [mathjax]1 + 2 + ... + 8 + 9[/mathjax] has a trick to it.
  
 
Rearranging the numbers so each pair sums up to 10, we have:
 
Rearranging the numbers so each pair sums up to 10, we have:
<cmath>(1 + 9)+(2+8)+(3+7)+(4+6)+5</cmath>. <math>4\cdot10+5 = 45</math>, and <math>900+45=\boxed{\text{(B)}~945}</math>.
+
[mathjax display=true](1 + 9)+(2+8)+(3+7)+(4+6)+5[/mathjax]. [mathjax]4\cdot10+5 = 45[/mathjax], and [mathjax]900+45=\boxed{\text{(B)}~945}[/mathjax].
  
 
==Solution 2==
 
==Solution 2==

Revision as of 18:29, 19 December 2023

Problem

$90+91+92+93+94+95+96+97+98+99=$


$\text{(A)}\ 845 \qquad \text{(B)}\ 945 \qquad \text{(C)}\ 1005 \qquad \text{(D)}\ 1025 \qquad \text{(E)}\ 1045$

Solution 1

To simplify the problem, we can group 90’s together: 90+91+...+98+99=9010+1+2+3+...+8+9.

9010=900, and finding 1+2+...+8+9 has a trick to it.

Rearranging the numbers so each pair sums up to 10, we have: (1+9)+(2+8)+(3+7)+(4+6)+5. 410+5=45, and 900+45=(B) 945.

Solution 2

We can express each of the terms as a difference from $100$ and then add the negatives using $\frac{n(n+1)}{2}=1+2+3+\cdots+(n-1)+n$ to get the answer. \begin{align*} (100-10)+(100-9)+\cdots+(100-1) &= 100\cdot10 -(1+2+\cdots+9+10)\\ &= 1000 - 55\\ &= \boxed{\text{(B)}~945} \end{align*}

Solution 3

Instead of breaking the sum then rearranging, we can rearrange directly: \begin{align*} 90+91+92+\cdots +98+99 &= (90+99)+(91+98)+(92+97)+(93+96)+(94+95) \\ &= 189+189+189+189+189 \\ &= \boxed{\text{(B)}~945}  \end{align*}

Solution 4

The finite arithmetic sequence formula states that the sum in the sequence is equal to $\frac{n}{2}\cdot(a_1+a_n)$ where $n$ is the number of terms in the sequence, $a_1$ is the first term and $a_n$ is the last term.

Applying the formula, we have: \[\frac{10}{2}\cdot(90+99)=\boxed{\text{(B)}~945}\]

Video Solution by BoundlessBrain!

https://youtu.be/8bVNfa-yEoM

Video Solution

https://youtu.be/1NtsgKc6mXs

~savannahsolver

See Also

1985 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png