Difference between revisions of "2024 IMO Problems/Problem 6"

(Created page with "Let <math>\mathbb{Q}</math> be the set of rational numbers. A function <math>f: \mathbb{Q} \to \mathbb{Q}</math> is called <math>\emph{aquaesulian}</math> if the following pro...")
 
Line 1: Line 1:
 
Let <math>\mathbb{Q}</math> be the set of rational numbers. A function <math>f: \mathbb{Q} \to \mathbb{Q}</math> is called <math>\emph{aquaesulian}</math> if the following property holds: for every <math>x,y \in \mathbb{Q}</math>,
 
Let <math>\mathbb{Q}</math> be the set of rational numbers. A function <math>f: \mathbb{Q} \to \mathbb{Q}</math> is called <math>\emph{aquaesulian}</math> if the following property holds: for every <math>x,y \in \mathbb{Q}</math>,
 
<cmath> f(x+f(y)) = f(x) + y \quad \text{or} \quad f(f(x)+y) = x + f(y). </cmath>Show that there exists an integer <math>c</math> such that for any aquaesulian function <math>f</math> there are at most <math>c</math> different rational numbers of the form <math>f(r) + f(-r)</math> for some rational number <math>r</math>, and find the smallest possible value of <math>c</math>.
 
<cmath> f(x+f(y)) = f(x) + y \quad \text{or} \quad f(f(x)+y) = x + f(y). </cmath>Show that there exists an integer <math>c</math> such that for any aquaesulian function <math>f</math> there are at most <math>c</math> different rational numbers of the form <math>f(r) + f(-r)</math> for some rational number <math>r</math>, and find the smallest possible value of <math>c</math>.
 +
 +
==Video Solution==
 +
https://youtu.be/7h3gJfWnDoc

Revision as of 02:33, 20 July 2024

Let $\mathbb{Q}$ be the set of rational numbers. A function $f: \mathbb{Q} \to \mathbb{Q}$ is called $\emph{aquaesulian}$ if the following property holds: for every $x,y \in \mathbb{Q}$, \[f(x+f(y)) = f(x) + y \quad \text{or} \quad f(f(x)+y) = x + f(y).\]Show that there exists an integer $c$ such that for any aquaesulian function $f$ there are at most $c$ different rational numbers of the form $f(r) + f(-r)$ for some rational number $r$, and find the smallest possible value of $c$.

Video Solution

https://youtu.be/7h3gJfWnDoc