Difference between revisions of "User:Johnxyz1"
(→Favorites) |
|||
Line 15: | Line 15: | ||
Favorite Typesetting Software: <cmath>\text{\LaTeX}</cmath> | Favorite Typesetting Software: <cmath>\text{\LaTeX}</cmath> | ||
+ | |||
+ | <math>\textit{Remark.}</math> | ||
+ | <cmath>\text\LaTeX>\text{Word}>\text{Canva}</cmath> | ||
+ | <cmath>\text{\LaTeX}+\textsf{beamer}>\text{Powerpoint}>\text{Canva}</cmath> | ||
+ | |||
Favorite Operating System: Linux (although I am rarely on one) | Favorite Operating System: Linux (although I am rarely on one) |
Revision as of 09:09, 21 September 2024
Contents
[hide]Major Contributions
Favorites
Favorite topic: for which I am reading AOPS intermediate book on
Favorite color:
Favorite software:
Favorite Typesetting Software:
Favorite Operating System: Linux (although I am rarely on one)
typesetting
Below are some stuff I am doing to practice . That does not mean I know all of it (actually the only ones I do not know yet is the cubic one and the one)
Source code for equations:
https://1drv.ms/t/c/c49430eefdbfaa19/EQw12iwklslElg9_nCMh0f0BVthxSSl-BOJAwsXtGbbhPg?e=1LfZJm
Personal
Complementary casework example: https://artofproblemsolving.com/wiki/index.php/2024_AMC_8_Problems/Problem_25
Representing Actions as Permutations
The idea is that if you must do a fixed number of operations of multiple types, you can make those operations letters, and permutate them. For example, if you have a grid of
UUUURRRRRR
which simplifies the problem.
Example: 2024 AMC 8 Problems/Problem 13. In this problem you can treat going up as