Difference between revisions of "2024 AMC 10A Problems/Problem 18"
Line 6: | Line 6: | ||
<math>\textbf{(A) }16\qquad\textbf{(B) }17\qquad\textbf{(C) }18\qquad\textbf{(D) }20\qquad\textbf{(E) }21</math> | <math>\textbf{(A) }16\qquad\textbf{(B) }17\qquad\textbf{(C) }18\qquad\textbf{(D) }20\qquad\textbf{(E) }21</math> | ||
− | ==Solution== | + | ==Solution 1== |
− | <math>2b^3+2b+4\equiv 0\pmod{16}\implies b^3+b+2\equiv 0\pmod 8</math>, if <math>b</math> even then <math>b+2\equiv 0\pmod 8\implies b\equiv 6\pmod 8</math>. If <math>b</math> odd then <math>b^2\equiv 1\pmod 8\implies b^3+b+2\equiv 2b+2\pmod 8</math> so <math>2b+2\equiv 0\pmod 8\implies b+1\equiv 0\pmod 4\implies b\equiv 3,7\pmod 8</math>. Now <math>8\mid 2024</math> so <math>\ | + | <math>2b^3+2b+4\equiv 0\pmod{16}\implies b^3+b+2\equiv 0\pmod 8</math>, if <math>b</math> even then <math>b+2\equiv 0\pmod 8\implies b\equiv 6\pmod 8</math>. If <math>b</math> odd then <math>b^2\equiv 1\pmod 8\implies b^3+b+2\equiv 2b+2\pmod 8</math> so <math>2b+2\equiv 0\pmod 8\implies b+1\equiv 0\pmod 4\implies b\equiv 3,7\pmod 8</math>. Now <math>8\mid 2024</math> so <math>\frac38\cdot 2024=759</math> but <math>3</math> is too small so <math>759 - 1 = 758\implies\boxed{20}</math>. |
− | ~OronSH ~mathkiddus | + | ~OronSH ~mathkiddus ~andliu766 |
==Solution 2== | ==Solution 2== |
Revision as of 19:44, 8 November 2024
- The following problem is from both the 2024 AMC 10A #18 and 2024 AMC 12A #11, so both problems redirect to this page.
Contents
[hide]Problem
There are exactly positive integers with such that the base- integer is divisible by (where is in base ten). What is the sum of the digits of ?
Solution 1
, if even then . If odd then so . Now so but is too small so . ~OronSH ~mathkiddus ~andliu766
Solution 2
Clearly, is either even or odd. If is even, let .
Thus, one solution is for some integer , or .
What if is odd? Then let :
This simply states that is odd. Thus, the other solution is for some integer , or .
We now simply must count the number of integers between and , inclusive, that are mod or mod . Note that the former case comprises even numbers only while the latter is only odd; thus, there is no overlap and we can safely count the number of each and add them.
In the former case, we have the numbers ; this list is equivalent to , which comprises numbers. In the latter case, we have the numbers , which comprises numbers. There are numbers in total, so our answer is .
~Technodoggo
Solution 3
Note that is to be divisible by , which means that is divisible by .
If , then is not divisible by .
If , then is not divisible by .
If , then is not divisible by .
If , then is divisible by .
If , then is not divisible by .
If , then is not divisible by .
If , then is divisible by .
If , then is divisible by .
Therefore, for every values of , of them will make divisible by . Therefore, since is divisible by , values of , but this includes , which does not satisfy the given inequality. Therefore, the answer is ~Tacos_are_yummy_1
See also
2024 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 17 |
Followed by Problem 19 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2024 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 10 |
Followed by Problem 12 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.