Difference between revisions of "2024 AMC 10A Problems/Problem 23"
Megaboy6679 (talk | contribs) m (→Solution 5) |
Technodoggo (talk | contribs) (→Solution 4) |
||
Line 51: | Line 51: | ||
==Solution 4== | ==Solution 4== | ||
− | |||
− | |||
− | |||
− | < | + | <cmath>\begin{align} |
+ | ab + c &= 100 \ | ||
+ | bc + a &= 87 \ | ||
+ | ca + b &= 60 | ||
+ | \end{align}</cmath> | ||
− | + | <cmath>(1) + (2) \implies ab + c +bc + a = (a+c)(b+1)=187\implies b+1=\pm 11,\pm 17</cmath> | |
− | |||
− | < | ||
− | < | + | <cmath>(1) - (2) \implies ab + c - bc - a = (a-c)(b-1)=13\implies b-1=\pm 1,\pm 13</cmath> |
+ | Note that <math>(b+1)-(b-1)=2</math>, and the only possible pair of results that yields this is <math>b-1=-13</math> and <math>b+1=-11</math>, so <math>a+c=-17</math>. | ||
+ | Therefore, | ||
− | < | + | <cmath>ab+ba+ac=ab + c +bc + a + ca + b -(a+b+c) = (1)+(2)+(3) - (a+b+c) = 100+87+60-(a+b+c)=\boxed{\textbf{(D) }276}.</cmath> |
− | + | ~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso], yuvag, Technodoggo (LaTeX credits to the latter two and editing to the latter) | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | ~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso] | ||
− | |||
− | |||
− | |||
==Solution 5== | ==Solution 5== |
Revision as of 18:10, 9 November 2024
- The following problem is from both the 2024 AMC 10A #23 and 2024 AMC 12A #17, so both problems redirect to this page.
Contents
[hide]Problem
Integers , , and satisfy , , and . What is ?
Solution
Subtracting the first two equations yields . Notice that both factors are integers, so could equal one of and . We consider each case separately:
For , from the second equation, we see that . Then , which is not possible as is an integer, so this case is invalid.
For , we have and , which by experimentation on the factors of has no solution, so this is also invalid.
For , we have and , which by experimentation on the factors of has no solution, so this is also invalid.
Thus, we must have , so and . Thus , so . We can simply trial and error this to find that so then . The answer is then .
~eevee9406
minor edits by Lord_Erty09
Solution 2
Adding up first two equations:
Subtracting equation 1 from equation 2:
Which implies that from
Giving us that
Therefore,
~lptoggled
Solution 3 (Guess and check)
The idea is that you could guess values for , since then and are factors of . The important thing to realize is that , , and are all negative. Then, this can be solved in a few minutes, giving the solution , which gives the answer ~andliu766
Solution 4
Note that , and the only possible pair of results that yields this is and , so .
Therefore,
~luckuso, yuvag, Technodoggo (LaTeX credits to the latter two and editing to the latter)
Solution 5
There are ordered pairs of : , ,
However, only the last ordered pair meets all three equations.
Therefore,
~luckuso ~megaboy6679 for formats
See also
2024 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2024 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 16 |
Followed by Problem 18 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.