Difference between revisions of "2024 AMC 12B Problems/Problem 15"
(→Solution 2 (Determinant)) |
(→Solution 2 (Determinant)) |
||
Line 28: | Line 28: | ||
==Solution 2 (Determinant)== | ==Solution 2 (Determinant)== | ||
To calculate the area of a triangle formed by three points | To calculate the area of a triangle formed by three points | ||
− | |||
<cmath> | <cmath> | ||
\text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| | \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| | ||
</cmath> | </cmath> | ||
− | |||
The coordinates are:<math>A(0, 1)</math>, <math>B(\log_2 3, 2)</math>, <math>C(\log_2 7, 3)</math> | The coordinates are:<math>A(0, 1)</math>, <math>B(\log_2 3, 2)</math>, <math>C(\log_2 7, 3)</math> | ||
Taking a numerical value into account: | Taking a numerical value into account: | ||
− | |||
<cmath> | <cmath> | ||
\text{Area} = \frac{1}{2} \left| 0 \cdot (2 - 3) + \log_2 3 \cdot (3 - 1) + \log_2 7 \cdot (1 - 2) \right| | \text{Area} = \frac{1}{2} \left| 0 \cdot (2 - 3) + \log_2 3 \cdot (3 - 1) + \log_2 7 \cdot (1 - 2) \right| | ||
</cmath> | </cmath> | ||
− | |||
Simplify: | Simplify: | ||
− | |||
<cmath> | <cmath> | ||
= \frac{1}{2} \left| 0 + \log_2 3 \cdot 2 + \log_2 7 \cdot (-1) \right| | = \frac{1}{2} \left| 0 + \log_2 3 \cdot 2 + \log_2 7 \cdot (-1) \right| | ||
Line 52: | Line 47: | ||
= \frac{1}{2} \left| \log_2 \frac{9}{7} \right| | = \frac{1}{2} \left| \log_2 \frac{9}{7} \right| | ||
</cmath> | </cmath> | ||
− | |||
Thus, the area is:<math>\text{Area} = \frac{1}{2} \left| \log_2 \frac{9}{7} \right|</math> = <math>\boxed{\textbf{(B) }\log_2 \frac{3}{\sqrt{7}}}</math> | Thus, the area is:<math>\text{Area} = \frac{1}{2} \left| \log_2 \frac{9}{7} \right|</math> = <math>\boxed{\textbf{(B) }\log_2 \frac{3}{\sqrt{7}}}</math> | ||
~Athmyx | ~Athmyx |
Revision as of 05:28, 14 November 2024
Problem
A triangle in the coordinate plane has vertices , , and . What is the area of ?
Solution 1 (Shoelace Theorem)
We rewrite: .
From here we setup Shoelace Theorem and obtain: .
Following log properties and simplifying gives (B).
~MendenhallIsBald
Solution 2 (Determinant)
To calculate the area of a triangle formed by three points
Taking a numerical value into account: Simplify: Thus, the area is: =
~Athmyx