Difference between revisions of "2001 AIME I Problems/Problem 7"
Newton1988 (talk | contribs) (→Solution) |
(-> tex/asy) |
||
Line 2: | Line 2: | ||
[[Triangle]] <math>ABC</math> has <math>AB=21</math>, <math>AC=22</math> and <math>BC=20</math>. Points <math>D</math> and <math>E</math> are located on <math>\overline{AB}</math> and <math>\overline{AC}</math>, respectively, such that <math>\overline{DE}</math> is [[parallel]] to <math>\overline{BC}</math> and contains the center of the [[incircle|inscribed circle]] of triangle <math>ABC</math>. Then <math>DE=m/n</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | [[Triangle]] <math>ABC</math> has <math>AB=21</math>, <math>AC=22</math> and <math>BC=20</math>. Points <math>D</math> and <math>E</math> are located on <math>\overline{AB}</math> and <math>\overline{AC}</math>, respectively, such that <math>\overline{DE}</math> is [[parallel]] to <math>\overline{BC}</math> and contains the center of the [[incircle|inscribed circle]] of triangle <math>ABC</math>. Then <math>DE=m/n</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | ||
+ | __TOC__ | ||
== Solution == | == Solution == | ||
=== Solution 1 === | === Solution 1 === | ||
Line 15: | Line 16: | ||
<center><math>\frac{h_{ADE}}{h_{ABC}} = \frac{h_{ABC}-r}{h_{ABC}} = \frac{21\sqrt{1311}/40-\sqrt{1311}/6}{21\sqrt{1311}/40}=\frac{DE}{20}.</math></center> Solving for <math>DE</math> gives <math>DE=\frac{860}{63},</math> so the answer is <math>m+n=\boxed{923}</math>. | <center><math>\frac{h_{ADE}}{h_{ABC}} = \frac{h_{ABC}-r}{h_{ABC}} = \frac{21\sqrt{1311}/40-\sqrt{1311}/6}{21\sqrt{1311}/40}=\frac{DE}{20}.</math></center> Solving for <math>DE</math> gives <math>DE=\frac{860}{63},</math> so the answer is <math>m+n=\boxed{923}</math>. | ||
− | === Solution 2 === | + | === Solution 2 ([[mass points]]) === |
− | + | <center><asy> | |
+ | pointpen = black; pathpen = black+linewidth(0.7); pen d = linewidth(0.7) + linetype("4 4"); | ||
+ | pair B=(0,0), C=(20,0), A=IP(CR(B,21),CR(C,22)), I=incenter(A,B,C), D=IP((0,I.y)--(20,I.y),A--B), E=IP((0,I.y)--(20,I.y),A--C); | ||
+ | D(MP("A",A,N)--MP("B",B)--MP("C",C)--cycle); D(incircle(A,B,C)); D(MP("P",I,(1,2))); D(MP("E",E,NE)--MP("D",D,NW)); | ||
+ | MP("20",(B+C)/2); MP("21",(A+B)/2,NW); MP("22",(A+C)/2,NE); | ||
+ | |||
+ | /* construct angle bisectors */ | ||
+ | path anglebisector (pair X, pair Y, pair Z, path K) { return Y -- IP(Y -- Y + 30 * (bisectorpoint(X,Y,Z)-Y) , K); } | ||
+ | D(anglebisector(C,A,B,B--C), d); D(anglebisector(B,C,A,A--B),d); D(anglebisector(C,B,A,A--C),d); | ||
+ | </asy></center> | ||
+ | |||
+ | Let <math>P</math> be the [[incircle]]; then it is be the intersection of all three [[angle bisector]]s. Draw the bisector <math>AP</math> to where it intersects <math>BC</math>, and name the intersection <math>F</math>. | ||
+ | |||
+ | Using the [[angle bisector theorem]], we know the ratio <math>BF:CF</math> is <math>21:22</math>, thus we shall assign a weight of <math>22</math> to point <math>B</math> and a weight of <math>21</math> to point <math>C</math>, giving <math>F</math> a weight of <math>43</math>. In the same manner, using another bisector, we find that <math>A</math> has a weight of <math>20</math>. So, now we know <math>P</math> has a weight of <math>63</math>, and the ratio of <math>FP:PA</math> is <math>20:43</math>. Therefore, the smaller similar triangle <math>ADE</math> is <math>43/63</math> the height of the original triangle <math>ABC</math>. So, <math>DE</math> is <math>43/63</math> the size of <math>BC</math>. Multiplying this ratio by the length of <math>BC</math>, we find <math>DE</math> is <math>860/63 = m/n</math>. Therefore, <math>m+n=\boxed{923}</math>. | ||
== See also == | == See also == |
Revision as of 12:30, 26 July 2008
Problem
Triangle has
,
and
. Points
and
are located on
and
, respectively, such that
is parallel to
and contains the center of the inscribed circle of triangle
. Then
, where
and
are relatively prime positive integers. Find
.
Solution
Solution 1
![[asy] pointpen = black; pathpen = black+linewidth(0.7); pair B=(0,0), C=(20,0), A=IP(CR(B,21),CR(C,22)), I=incenter(A,B,C), D=IP((0,I.y)--(20,I.y),A--B), E=IP((0,I.y)--(20,I.y),A--C); D(MP("A",A,N)--MP("B",B)--MP("C",C)--cycle); D(incircle(A,B,C)); D(MP("I",I,NE)); D(MP("E",E,NE)--MP("D",D,NW)); D((A.x,0)--A,linetype("4 4")+linewidth(0.7)); D((I.x,0)--I,linetype("4 4")+linewidth(0.7)); D(rightanglemark(B,(A.x,0),A,30)); MP("20",(B+C)/2); MP("21",(A+B)/2,NW); MP("22",(A+C)/2,NE); [/asy]](http://latex.artofproblemsolving.com/3/0/8/308015d62aeb9917bd2a032c366423e1e0529c1f.png)
The semiperimeter of is
. By Heron's formula, the area of the whole triangle is
. Using the formula
, we find that the inradius is
. Since
, the ratio of the heights of triangles
and
is equal to the ratio between sides
and
. From
, we find
. Thus, we have

Solving for gives
so the answer is
.
Solution 2 (mass points)
![[asy] pointpen = black; pathpen = black+linewidth(0.7); pen d = linewidth(0.7) + linetype("4 4"); pair B=(0,0), C=(20,0), A=IP(CR(B,21),CR(C,22)), I=incenter(A,B,C), D=IP((0,I.y)--(20,I.y),A--B), E=IP((0,I.y)--(20,I.y),A--C); D(MP("A",A,N)--MP("B",B)--MP("C",C)--cycle); D(incircle(A,B,C)); D(MP("P",I,(1,2))); D(MP("E",E,NE)--MP("D",D,NW)); MP("20",(B+C)/2); MP("21",(A+B)/2,NW); MP("22",(A+C)/2,NE); /* construct angle bisectors */ path anglebisector (pair X, pair Y, pair Z, path K) { return Y -- IP(Y -- Y + 30 * (bisectorpoint(X,Y,Z)-Y) , K); } D(anglebisector(C,A,B,B--C), d); D(anglebisector(B,C,A,A--B),d); D(anglebisector(C,B,A,A--C),d); [/asy]](http://latex.artofproblemsolving.com/7/c/7/7c752cc350ded25b2c947d336d77bc6ccf240f96.png)
Let be the incircle; then it is be the intersection of all three angle bisectors. Draw the bisector
to where it intersects
, and name the intersection
.
Using the angle bisector theorem, we know the ratio is
, thus we shall assign a weight of
to point
and a weight of
to point
, giving
a weight of
. In the same manner, using another bisector, we find that
has a weight of
. So, now we know
has a weight of
, and the ratio of
is
. Therefore, the smaller similar triangle
is
the height of the original triangle
. So,
is
the size of
. Multiplying this ratio by the length of
, we find
is
. Therefore,
.
See also
2001 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |