Difference between revisions of "2001 AIME II Problems/Problem 14"
m |
|||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
− | {{ | + | To satisfy <math>z^{28} - z^{8} - 1 = 0</math>, <math>Im(z^{28})=Im(z^{8})</math> and <math>Re(z^{28})=Re(z^{8})+1</math>. |
+ | |||
+ | Since <math>\mid z \mid = 1</math>, <math>z</math> is on the unit circle centered at the origin in the complex plane. | ||
+ | |||
+ | Since <math>Im(z^{28})=Im(z^{8})</math>, <math>z^{28}</math> and <math>z^8</math> have the same <math>y</math> coordinate. | ||
+ | |||
+ | Since <math>Re(z^{28})=Re(z^{8})+1</math>, <math>z^{28}</math> is <math>1</math> unit to the right of <math>z^{8}</math>. | ||
+ | |||
+ | It is easy to see that the only possibilities are <math>(z^{28},z^{8})=(cis(60),cis(120))</math> or <math>(cis{(300)},cis{(240)})</math>. | ||
+ | |||
+ | For the first possibility: | ||
+ | |||
+ | <math>z^{28}=cis(28\theta)=cis(60) \Rightarrow 28\theta \equiv 60 \pmod{360} \Rightarrow \theta \equiv 15 \pmod{90}</math>. | ||
+ | |||
+ | <math>z^{8}=cis(8\theta)=cis(120) \Rightarrow 8\theta \equiv 120 \pmod{360} \Rightarrow \theta \equiv 15 \pmod{45}</math>. | ||
+ | |||
+ | Thus, <math>\theta \equiv 15 \pmod{90}</math>. This yields <math>\theta = 15, 105, 195, 285</math>. | ||
+ | |||
+ | For the second possibility: | ||
+ | |||
+ | <math>z^{28}=cis(28\theta)=cis(300) \Rightarrow 28\theta \equiv 300 \pmod{360} \Rightarrow \theta \equiv 75 \pmod{90}</math>. | ||
+ | |||
+ | <math>z^{8}=cis(8\theta)=cis(240) \Rightarrow 8\theta \equiv 240 \pmod{360} \Rightarrow \theta \equiv 30 \pmod{45}</math>. | ||
+ | |||
+ | Thus, <math>\theta \equiv 75 \pmod{90}</math>. This yields <math>\theta = 75, 165, 255, 345</math>. | ||
+ | |||
+ | Therefore <math>(\theta_1,\theta_2,\theta_3,\theta_4,\theta_5,\theta_6,\theta_7,\theta_8)=(15,75,105,165,195,255,285,345)</math> and <math>\theta_2+\theta_4+\theta_6+\theta_8+=\boxed{840}</math> | ||
== See also == | == See also == | ||
{{AIME box|year=2001|n=II|num-b=13|num-a=15}} | {{AIME box|year=2001|n=II|num-b=13|num-a=15}} |
Revision as of 14:36, 26 July 2008
Problem
There are complex numbers that satisfy both and . These numbers have the form , where and angles are measured in degrees. Find the value of .
Solution
To satisfy , and .
Since , is on the unit circle centered at the origin in the complex plane.
Since , and have the same coordinate.
Since , is unit to the right of .
It is easy to see that the only possibilities are or .
For the first possibility:
.
.
Thus, . This yields .
For the second possibility:
.
.
Thus, . This yields .
Therefore and
See also
2001 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |