Difference between revisions of "PUMAC 2008-2009 Number Theory A problems"

(New page: 1. (2 points) How many zeros are there at the end of 792! when written in base 10? 2. (3 points) Find all integral solutions to <math>x^y-y^x=1</math>. 3. Find the largest integer <math>...)
 
Line 3: Line 3:
 
2. (3 points) Find all integral solutions to <math>x^y-y^x=1</math>.
 
2. (3 points) Find all integral solutions to <math>x^y-y^x=1</math>.
  
3. Find the largest integer <math>n</math>, where <math>2009^n</math> divides <math>2008^(2009^(2010))+2010^(2009^(2008))</math>.
+
3. Find the largest integer <math>n</math>, where <math>2009^n</math> divides <math>2008^2009^(2010)+2010^2009^(2008)</math>.

Revision as of 22:19, 4 February 2009

1. (2 points) How many zeros are there at the end of 792! when written in base 10?

2. (3 points) Find all integral solutions to $x^y-y^x=1$.

3. Find the largest integer $n$, where $2009^n$ divides $2008^2009^(2010)+2010^2009^(2008)$.