Difference between revisions of "2013 AIME I Problems/Problem 14"

(Solution)
(Solution)
Line 15: Line 15:
  
 
== Solution ==
 
== Solution ==
(solution)
+
===Solution 1===
 
<math>\begin{align*}</math>
 
<math>\begin{align*}</math>
 
<math>P sin\theta\ + Q cos\theta\ = cos\theta\ - \frac{1}{2}\ P</math>
 
<math>P sin\theta\ + Q cos\theta\ = cos\theta\ - \frac{1}{2}\ P</math>
Line 34: Line 34:
  
 
The answer is <math>\boxed{036}</math>
 
The answer is <math>\boxed{036}</math>
 +
 +
===Solution 2===
 +
<math>\begin{align*}</math>
 +
Use sum to product formulas to rewrite <math>P</math> and <math>Q</math>
 +
<math>\end{align*}</math>
 +
 +
<math>P sin\theta\ + Q cos\theta\ = cos \theta\ - \frac{1}{4}\cos\theta + \frac{1}{8}\sin 2\theta + \frac{1}{16}\cos 3\theta - \frac{1}{32}\sin 4\theta + ... </math>
 +
 +
<math>\begin{align*}</math>
 +
Therefore, <math>P sin\theta\ - Q cos\theta\ = -2P</math>
 +
<math>\end{align*}</math>
 +
 +
<math>\begin{align*}</math>
 +
Using <math>\frac{P}{Q} =  \frac{2\sqrt2}{7}</math>, <math>Q = \frac{7}{2\sqrt2} P</math>
 +
<math>\end{align*}</math>
 +
 +
<math>\begin{align*}</math>
 +
Plug in to the previous equation and cancel out the "P" terms to get: <math>sin\theta - \frac{7}{2\sqrt2} cos\theta = -2</math>
 +
<math>\end{align*}</math>
 +
 +
Then use the pythagorean identity to solve for <math>sin\theta</math>, <math>sin\theta = \boxed{036}</math>
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2013|n=I|num-b=13|num-a=15}}
 
{{AIME box|year=2013|n=I|num-b=13|num-a=15}}

Revision as of 13:44, 23 March 2013

Problem 14

14. For $\pi \le \theta < 2\pi$, let

$\begin{align*}$ (Error compiling LaTeX. Unknown error_msg) $P &= \frac12\cos\theta - \frac14\sin 2\theta - \frac18\cos 3\theta + \frac{1}{16}\sin 4\theta + \frac{1}{32} \cos 5\theta - \frac{1}{64} \sin 6\theta - \frac{1}{128} \cos 7\theta + \cdots$ (Error compiling LaTeX. Unknown error_msg) $\end{align*}$ (Error compiling LaTeX. Unknown error_msg)

and

$\begin{align*}$ (Error compiling LaTeX. Unknown error_msg) $Q &= 1 - \frac12\sin\theta -\frac14\cos 2\theta + \frac18 \sin 3\theta + \frac{1}{16}\cos 4\theta - \frac{1}{32}\sin 5\theta - \frac{1}{64}\cos 6\theta +\frac{1}{128}\sin 7\theta + \cdots$ (Error compiling LaTeX. Unknown error_msg) $\end{align*}$ (Error compiling LaTeX. Unknown error_msg)

so that $\frac{P}{Q} = \frac{2\sqrt2}{7}$. Then $\sin\theta = -\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution

Solution 1

$\begin{align*}$ (Error compiling LaTeX. Unknown error_msg) $P sin\theta\ + Q cos\theta\ = cos\theta\ - \frac{1}{2}\ P$ $\end{align*}$ (Error compiling LaTeX. Unknown error_msg) and $\begin{align*}$ (Error compiling LaTeX. Unknown error_msg) $P cos\theta\ + Q sin\theta\ = -2(Q-1)$ $\end{align*}$ (Error compiling LaTeX. Unknown error_msg)

Solving for P, Q we have


$\frac{P}{Q} = \frac{cos\theta\ ( sin\theta + 2)}{8 + 8sin\theta + 2sin^2\theta } = \frac{2\sqrt2}{7}$

Square both side, and use polynomial rational root theorem to solve $sin\theta$

$sin\theta = -\frac{17}{19}$

The answer is $\boxed{036}$

Solution 2

$\begin{align*}$ (Error compiling LaTeX. Unknown error_msg) Use sum to product formulas to rewrite $P$ and $Q$ $\end{align*}$ (Error compiling LaTeX. Unknown error_msg)

$P sin\theta\ + Q cos\theta\ = cos \theta\ - \frac{1}{4}\cos\theta + \frac{1}{8}\sin 2\theta + \frac{1}{16}\cos 3\theta - \frac{1}{32}\sin 4\theta + ...$

$\begin{align*}$ (Error compiling LaTeX. Unknown error_msg) Therefore, $P sin\theta\ - Q cos\theta\ = -2P$ $\end{align*}$ (Error compiling LaTeX. Unknown error_msg)

$\begin{align*}$ (Error compiling LaTeX. Unknown error_msg) Using $\frac{P}{Q} =  \frac{2\sqrt2}{7}$, $Q = \frac{7}{2\sqrt2} P$ $\end{align*}$ (Error compiling LaTeX. Unknown error_msg)

$\begin{align*}$ (Error compiling LaTeX. Unknown error_msg) Plug in to the previous equation and cancel out the "P" terms to get: $sin\theta - \frac{7}{2\sqrt2} cos\theta = -2$ $\end{align*}$ (Error compiling LaTeX. Unknown error_msg)

Then use the pythagorean identity to solve for $sin\theta$, $sin\theta = \boxed{036}$

See also

2013 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions