Difference between revisions of "2013 AIME I Problems/Problem 14"
Fortenforge (talk | contribs) (→Solution 2) |
(→Solution) |
||
Line 55: | Line 55: | ||
Then use the pythagorean identity to solve for <math>\sin\theta</math>, <math>\sin\theta = \boxed{036}</math> | Then use the pythagorean identity to solve for <math>\sin\theta</math>, <math>\sin\theta = \boxed{036}</math> | ||
+ | |||
+ | ===Solution 3=== | ||
+ | |||
+ | Note that <cmath>e^{i\theta}=\cos(\theta)+i\sin(\theta)</cmath> | ||
+ | |||
+ | Thus, the following identities follow immediately: | ||
+ | <cmath>ie^{i\theta}=i(\cos(\theta)+i\sin(\theta))=-\sin(\theta)+i\cos(\theta)</cmath> | ||
+ | <cmath>i^2 e^{i\theta}=-e^{i\theta}=-\cos(\theta)-i\sin(\theta)</cmath> | ||
+ | <cmath>i^3 e^{i\theta}=\sin(\theta)-i\cos(\theta)</cmath> | ||
+ | |||
+ | Consider, now, the sum <math>Q+iP</math>. It follows fairly immediately that: | ||
+ | |||
+ | <cmath>Q+iP=1+\left(\frac{i}{2}\right)^1e^{i\theta}+\left(\frac{i}{2}\right)^2e^{2i\theta}+\ldots=\frac{1}{1-\frac{i}{2}e^{i\theta}}=\frac{2}{2-ie^{i\theta}}</cmath> | ||
+ | <cmath>Q+iP=\frac{2}{2-ie^{i\theta}}=\frac{2}{2-(-\sin(\theta)+i\cos(\theta))}=\frac{2}{(2+\sin(\theta))-i\cos(\theta)}</cmath> | ||
+ | |||
+ | This follows straight from the geometric series formula and simple simplification. We can now multiply the denominator by it's complex conjugate to find: | ||
+ | |||
+ | <cmath>Q+iP=\frac{2}{(2+\sin(\theta))-i\cos(\theta)}\left(\frac{(2+\sin(\theta))+i\cos(\theta)}{(2+\sin(\theta))+i\cos(\theta)}\right)</cmath> | ||
+ | <cmath>Q+iP=\frac{2((2+\sin(\theta))+i\cos(\theta))}{(2+\sin(\theta))^2+\cos^2(\theta)}</cmath> | ||
+ | |||
+ | Comparing real and imaginary parts, we find: | ||
+ | <cmath>\frac{P}{Q}=\frac{\cos(\theta)}{2+\sin(\theta)}=\frac{2\sqrt{2}}{7}</cmath> | ||
+ | |||
+ | Squaring this equation and letting <math>\sin^2(\theta)=x</math>: | ||
+ | |||
+ | <math>\frac{P^2}{Q^2)=\frac{\cos^2(\theta)}{4+4\sin(\theta)+\sin^2(\theta)}=\frac{1-x^2}{4+4x+x^2}=\frac{8}{49}</math> | ||
+ | |||
+ | Solving for <math>x</math> gives the answer. | ||
== See also == | == See also == | ||
{{AIME box|year=2013|n=I|num-b=13|num-a=15}} | {{AIME box|year=2013|n=I|num-b=13|num-a=15}} |
Revision as of 13:33, 31 March 2013
Problem 14
14. For , let
$\begin{align*}$ (Error compiling LaTeX. Unknown error_msg) $P &= \frac12\cos\theta - \frac14\sin 2\theta - \frac18\cos 3\theta + \frac{1}{16}\sin 4\theta + \frac{1}{32} \cos 5\theta - \frac{1}{64} \sin 6\theta - \frac{1}{128} \cos 7\theta + \cdots$ (Error compiling LaTeX. Unknown error_msg) $\end{align*}$ (Error compiling LaTeX. Unknown error_msg)
and
$\begin{align*}$ (Error compiling LaTeX. Unknown error_msg) $Q &= 1 - \frac12\sin\theta -\frac14\cos 2\theta + \frac18 \sin 3\theta + \frac{1}{16}\cos 4\theta - \frac{1}{32}\sin 5\theta - \frac{1}{64}\cos 6\theta +\frac{1}{128}\sin 7\theta + \cdots$ (Error compiling LaTeX. Unknown error_msg) $\end{align*}$ (Error compiling LaTeX. Unknown error_msg)
so that . Then
where
and
are relatively prime positive integers. Find
.
Solution
Solution 1
$\begin{align*}$ (Error compiling LaTeX. Unknown error_msg)
$\end{align*}$ (Error compiling LaTeX. Unknown error_msg)
and
$\begin{align*}$ (Error compiling LaTeX. Unknown error_msg)
$\end{align*}$ (Error compiling LaTeX. Unknown error_msg)
Solving for P, Q we have
Square both side, and use polynomial rational root theorem to solve
The answer is
Solution 2
$\begin{align*}$ (Error compiling LaTeX. Unknown error_msg)
Use sum to product formulas to rewrite and
$\end{align*}$ (Error compiling LaTeX. Unknown error_msg)
$\begin{align*}$ (Error compiling LaTeX. Unknown error_msg)
Therefore,
$\end{align*}$ (Error compiling LaTeX. Unknown error_msg)
$\begin{align*}$ (Error compiling LaTeX. Unknown error_msg)
Using ,
$\end{align*}$ (Error compiling LaTeX. Unknown error_msg)
$\begin{align*}$ (Error compiling LaTeX. Unknown error_msg)
Plug in to the previous equation and cancel out the "P" terms to get:
$\end{align*}$ (Error compiling LaTeX. Unknown error_msg)
Then use the pythagorean identity to solve for ,
Solution 3
Note that
Thus, the following identities follow immediately:
Consider, now, the sum . It follows fairly immediately that:
This follows straight from the geometric series formula and simple simplification. We can now multiply the denominator by it's complex conjugate to find:
Comparing real and imaginary parts, we find:
Squaring this equation and letting :
$\frac{P^2}{Q^2)=\frac{\cos^2(\theta)}{4+4\sin(\theta)+\sin^2(\theta)}=\frac{1-x^2}{4+4x+x^2}=\frac{8}{49}$ (Error compiling LaTeX. Unknown error_msg)
Solving for gives the answer.
See also
2013 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |