Difference between revisions of "2018 AMC 10B Problems/Problem 24"
(→Solution) |
(→Solution) |
||
Line 21: | Line 21: | ||
Y=(5/4, sqrt(3)/4); | Y=(5/4, sqrt(3)/4); | ||
Z=(-1/4, sqrt(3)/4); | Z=(-1/4, sqrt(3)/4); | ||
+ | M=(0,sqrt(3)/2); | ||
+ | N=(,); | ||
+ | O=(,); | ||
draw(A--B--C--D--E--F--cycle); | draw(A--B--C--D--E--F--cycle); | ||
Line 26: | Line 29: | ||
draw(A--C--E--cycle); | draw(A--C--E--cycle); | ||
draw(X--Y--Z--cycle); | draw(X--Y--Z--cycle); | ||
+ | draw(M—N—O—cycle); | ||
label("$A$",A,NW); | label("$A$",A,NW); | ||
Line 36: | Line 40: | ||
label("$Y$", Y, ESE); | label("$Y$", Y, ESE); | ||
label("$Z$", Z, WSW); | label("$Z$", Z, WSW); | ||
+ | label("$M$",M, W); | ||
+ | label("$N$", N, NE); | ||
+ | label("$O$", O, SE); | ||
</asy> | </asy> |
Revision as of 16:53, 16 February 2018
Problem
Let be a regular hexagon with side length . Denote , , and the midpoints of sides , , and , respectively. What is the area of the convex hexagon whose interior is the intersection of the interiors of and ?
Answer:
Solution
pair A,B,C,D,E,F,W,X,Y,Z; A=(0,sqrt(3)); B=(1,sqrt(3)); C=(3/2,sqrt(3)/2); D=(1,0); E=(0,0); F=(-1/2,sqrt(3)/2); X=(1/2, sqrt(3)); Y=(5/4, sqrt(3)/4); Z=(-1/4, sqrt(3)/4); M=(0,sqrt(3)/2); N=(,); O=(,); draw(A--B--C--D--E--F--cycle); draw(A--C--E--cycle); draw(X--Y--Z--cycle); draw(M—N—O—cycle); label("$A$",A,NW); label("$B$",B,NE); label("$C$",C,ESE); label("$D$",D,SE); label("$E$",E,SW); label("$F$",F,WSW); label("$X$", X, N); label("$Y$", Y, ESE); label("$Z$", Z, WSW); label("$M$",M, W); label("$N$", N, NE); label("$O$", O, SE); (Error making remote request. Unknown error_msg)
See Also
2018 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2018 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 19 |
Followed by Problem 21 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.