G285 2021 MC-IME I

Revision as of 17:57, 8 June 2021 by Geometry285 (talk | contribs)

Problem 1

Let a recursive sequence $a_n$ be defined such that $a_1=20$, and $a_n=16a_{n-1}+4$. Find the last $4$ digits of \[\sum_{i=1}^{100} a_i\]

Solution

Problem 2

If the number $abcd_{11}$ is a palindrome in base $7$, and $dcba$ expressed in base $10$ does not begin with a nonzero digit, find the difference between the largest and smallest possible sum of $a+b+c+d$.

Solution