2015 IMO Problems/Problem 3
Let be an acute triangle with
. Let
be its circumcircle,
its orthocenter, and
the foot of the altitude from
. Let
be the midpoint of
. Let
be the point on
such that
. Assume that the points
,
,
,
, and
are all different, and lie on
in this order.
Prove that the circumcircles of triangles and
are tangent to each other.
See Also
2015 IMO (Problems) • Resources | ||
Preceded by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 4 |
All IMO Problems and Solutions |