1972 USAMO Problems/Problem 2
Contents
[hide]Problem
A given tetrahedron is isosceles, that is,
. Show that the faces of the tetrahedron are acute-angled triangles.
Solution
Solution 2
Suppose is fixed.
By the equality conditions, it follows that the maximal possible value of
occurs when the four vertices are coplanar, with
on the opposite side of
as
.
In this case, the tetrahedron is not actually a tetrahedron, so this maximum isn't actually attainable.
For the sake of contradiction, suppose is non-acute.
Then,
.
In our optimal case noted above,
is a parallelogram, so
However, as stated, equality cannot be attained, so we get our desired contradiction.
See also
1972 USAMO (Problems • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |