1983 AIME Problems/Problem 8

Revision as of 18:37, 15 February 2019 by Sevenoptimus (talk | contribs) (Cleaned up the solution (and deleted Solution 2, which, as far as I can tell, is simply wrong))

Problem

What is the largest $2$-digit prime factor of the integer $n = {200\choose 100}$?

Solution

Expanding the binomial coefficient, we get ${200 \choose 100}=\frac{200!}{100!100!}$. Let the required prime be $p$; then $10 \le p < 100$. If $p > 50$, then the factor of $p$ appears twice in the denominator. Thus, we need $p$ to appear as a factor at least three times in the numerator, so $3p<200$. The largest such prime is $\boxed{061}$, which is our answer.

See Also

1983 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions