2002 AIME II Problems/Problem 1

Revision as of 20:56, 11 February 2020 by Anmol04 (talk | contribs) (Problem: added spacing)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Given that
\begin{eqnarray*}&(1)& x\text{ and }y\text{ are both integers between 100 and 999, inclusive;}\qquad \qquad \qquad \qquad \qquad \\     &(2)& y\text{ is the number formed by reversing the digits of }x\text{; and}\\     &(3)& z=|x-y|. \end{eqnarray*}

How many distinct values of $z$ are possible?

Solution

We express the numbers as $x=100a+10b+c$ and $y=100c+10b+a$. From this, we have \begin{eqnarray*}z&=&|100a+10b+c-100c-10b-a|\\&=&|99a-99c|\\&=&99|a-c|\\ \end{eqnarray*} Because $a$ and $c$ are digits, and $a$ and $c$ are both between 1 and 9 (from condition 1), there are $\boxed{009}$ possible values (since all digits except $9$ can be expressed this way).

See also

2002 AIME II (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png