1977 AHSME Problems/Problem 6

Revision as of 13:57, 17 August 2021 by Jiang147369 (talk | contribs) (Created page with "== Problem 6 == If <math>x, y</math> and <math>2x + \frac{y}{2}</math> are not zero, then <math>\left( 2x + \frac{y}{2} \right)^{-1} \left[(2x)^{-1} + \left( \frac{y}{2} \rig...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 6

If $x, y$ and $2x + \frac{y}{2}$ are not zero, then $\left( 2x + \frac{y}{2} \right)^{-1} \left[(2x)^{-1} + \left( \frac{y}{2} \right)^{-1} \right]$ equals

$\textbf{(A) }1\qquad \textbf{(B) }xy^{-1}\qquad \textbf{(C) }x^{-1}y\qquad \textbf{(D) }(xy)^{-1}\qquad  \textbf{(E) }\text{none of these}$


Solution

We can write $\left( 2x+ \frac{y}{2} \right)^{-1} = \left( \frac{4x+y}{2} \right)^{-1} = \frac{2}{4x+y}$.

Then, the expression simplifies to \[\left( 2x + \frac{y}{2} \right)^{-1} \left[(2x)^{-1} + \left( \frac{y}{2} \right)^{-1} \right] \Rightarrow \frac{2}{4x+y} \left( \frac{1}{2x} + \frac{2}{y} \right) \Rightarrow \frac{2}{4x+y} \left( \frac{y+4x}{2xy} \right) \Rightarrow \frac{1}{xy}.\]


Thus, our answer is $\textbf{(D) }(xy)^{-1}$. ~jiang147369


See Also

1977 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png