1976 AHSME Problems/Problem 25

Revision as of 10:15, 7 September 2021 by MRENTHUSIASM (talk | contribs) (Created page with "== Problem == For a sequence <math>u_1,u_2\dots</math>, define <math>\Delta^1(u_n)=u_{n+1}-u_n</math> and, for all integer <math>k>1, \Delta^k(u_n)=\Delta^1(\Delta^{k-1}(u_n...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

For a sequence $u_1,u_2\dots$, define $\Delta^1(u_n)=u_{n+1}-u_n$ and, for all integer $k>1, \Delta^k(u_n)=\Delta^1(\Delta^{k-1}(u_n))$. If $u_n=n^3+n$, then $\Delta^k(u_n)=0$ for all $n$

$\textbf{(A) }\text{if }k=1\qquad \\ \textbf{(B) }\text{if }k=2,\text{ but not if }k=1\qquad \\ \textbf{(C) }\text{if }k=3,\text{ but not if }k=2\qquad \\ \textbf{(D) }\text{if }k=4,\text{ but not if }k=3\qquad\\ \textbf{(E) }\text{for no value of }k$