1953 AHSME Problems/Problem 1

Revision as of 03:01, 14 June 2022 by Spook (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

A boy buys oranges at $3$ for $10$ cents. He will sell them at $5$ for $20$ cents. In order to make a profit of $$1.00$, he must sell:

$\textbf{(A)}\ 67 \text{ oranges} \qquad \textbf{(B)}\ 150 \text{ oranges} \qquad \textbf{(C)}\ 200\text{ oranges}\\  \textbf{(D)}\ \text{an infinite number of oranges}\qquad \textbf{(E)}\ \text{none of these}$

Solution

The boy buys $3$ oranges for $10$ cents or $1$ orange for $\frac{10}{3}$ cents. He sells them at $\frac{20}{5}=4$ cents each. That means for every orange he sells, he makes a profit of $4-\frac{10}{3}=\frac{2}{3}$ cents.

To make a profit of $100$ cents, he needs to sell $\frac{100}{\frac{2}{3}}=\boxed{150}=\boxed{\text{B}}$

~mathsolver101

Solution 2

The boy buys $3$ oranges for $10$ cents. He sells them at $5$ for $20$ cents. So, he buys $15$ for $50$ cents and sells them at $15$ for $60$ cents, so he makes $10$ cents of profit on every $15$ oranges. To make $100$ cents of profit, he needs to sell $15 \cdot \frac{100}{10} = \boxed{150}$ oranges.

See Also

1953 AHSC (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png