1957 AHSME Problems/Problem 35

Revision as of 07:55, 26 July 2024 by Thepowerful456 (talk | contribs) (diagram)

Problem

Side $AC$ of right triangle $ABC$ is divided into $8$ equal parts. Seven line segments parallel to $BC$ are drawn to $AB$ from the points of division. If $BC = 10$, then the sum of the lengths of the seven line segments:

$\textbf{(A)}\ \text{cannot be found from the given information} \qquad \textbf{(B)}\ \text{is }{33}\qquad \textbf{(C)}\ \text{is }{34}\qquad\textbf{(D)}\ \text{is }{35}\qquad\textbf{(E)}\ \text{is }{45}$

Solution

[asy]  import geometry;  point B = (0,0); point A = (0,16); point C = (10,0);  // Triangle ABC draw(triangle(A,B,C)); dot(A); label("A",A,NW); dot(B); label("B",B,SW); dot(C); label("C",C,SE);  // Parallel Lines for (real x=0; x<length(segment(A,B)); x += length(segment(A,B))/8) {   pair[] y = intersectionpoints(parallel((0,x),line(B,C)),A--C);   draw((0,x)--y[0]); }  // Length Label label("$10$", B/2+C/2, S);  [/asy]

$\boxed{\textbf{(D)} \text{ is } 35}$.

See Also

1957 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 34
Followed by
Problem 36
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png