2007 AMC 8 Problems/Problem 8

Revision as of 16:37, 28 October 2024 by Savannahsolver (talk | contribs)

Problem

In trapezoid $ABCD$, $\overline{AD}$ is perpendicular to $\overline{DC}$, $AD = AB = 3$, and $DC = 6$. In addition, $E$ is on $\overline{DC}$, and $\overline{BE}$ is parallel to $\overline{AD}$. Find the area of $\triangle BEC$. [asy] defaultpen(linewidth(0.7)); pair A=(0,3), B=(3,3), C=(6,0), D=origin, E=(3,0); draw(E--B--C--D--A--B); draw(rightanglemark(A, D, C)); label("$A$", A, NW); label("$B$", B, NW); label("$C$", C, SE); label("$D$", D, SW); label("$E$", E, NW); label("$3$", A--D, W); label("$3$", A--B, N); label("$6$", E, S); [/asy]

$\textbf{(A)}\ 3 \qquad \textbf{(B)}\ 4.5 \qquad \textbf{(C)}\ 6 \qquad \textbf{(D)}\ 9 \qquad \textbf{(E)}\ 18$

Solution 1 (Area Formula for Triangles)

Clearly, $ABED$ is a square with side-length $3.$ By segment subtraction, we have $EC = DC - DE = 6 - 3 = 3.$

The area of $\triangle BEC$ is \[\frac12\cdot EC\cdot BE = \frac12\cdot3\cdot3 = \boxed{\textbf{(B)}\ 4.5}.\] ~Aplus95 (Solution)

~MRENTHUSIASM (Revision)

Solution 2 (Area Subtraction)

Clearly, $ABED$ is a square with side-length $3.$

Let the brackets denote areas. We apply area subtraction to find the area of $\triangle BEC:$ \begin{align*} [BEC]&=[ABCD]-[ABED] \\ &=\frac{AB+CD}{2}\cdot AD - AB^2 \\ &=\frac{3+6}{2}\cdot 3 - 3^2 \\ &=\boxed{\textbf{(B)}\ 4.5}. \end{align*} ~MRENTHUSIASM

Video Solution by SpreadTheMathLove

https://www.youtube.com/watch?v=omFpSGMWhFc

Video Solution by WhyMath

https://youtu.be/Qdbpdc-Khg4

See Also

2007 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png